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Abstract

Mativated by a recent work of Falin [8}, we consider a new multiclass
batch arrival retrial queue accepting n-types of customers who may arrive
in the same batch. If at an arrival epoch the server is idle then the
customers of the highest priority in the batch form an ordinary queue
waiting to be served while the rest of them leave the system and repeat
their demand individually after an exponentially distributed time different
for each type of customers. On the other hand, if the server is unavailable,
then all customers join their corresponding retrial box. Whenever the
server, upon a service completion, phases an empty queue departs for a
single vacation. Obviously there is a gate in front of server which is opened
when the server is idle. When the server is occupied the gate closes and will
be opened again upon the server returns from the vacation. An interesting
application of the proposed model, in streaming multimedia applications
is also presented. For such a system, we obtain in steady state the mean
number of customers in the queue and in each retrial box separately.

Keywords: Multiclass retrial queue, structured batch arrivals, prior-
ities, vacations, general services. ‘

1 Intoduction

Retrial queues are characterized by the feature that an arriving customer who
finds upon arrival all servers busy, leaves the service area and repeats his demand
after a random amount of time. Such kind of queueing systems are widely used
to model computer and communications networks where, for example blocked
terminals make retrials to receive service from a central processor, retail shop-
ping queues, telephone-switching systems where a blocked subscriber repeats
his call until a successful connection is established etc. For a complete survey



of past works and applications on retrial queues see Falin and Templeton [71,
Artalejo and Gomez-Corral [2], Kulkarni and Liang [13] and Artalejo [1].

Retrial queues with batch arrivals were considered for the first time by Falin
[4], who obtain the generating function of the number of customers in the system.
A more detailed analysis of the same model was also given by Falin [5] who
studied the non stationary regime and the busy period. Recently, several papers
have been published on batch arrival retrial queues. As a related works see
Langaris and Moutzoukis [14], Dudin and Klimenok [3], Kim et al. [11] and Ke
and Chang [10].

Multiclass retrial queues with batch arrivals were consider firstly by Kulka-
rny [12], in the case of two types of customers, while Falin (6], using a differ-
ent methodology extend Kulkarni’s results in case of more than two types of
customers. Later, Grishechkin [9] analyse the same model using the theory of
branching process with immigration and obtain the Laplace transforms of queue
lengths, the virtual waiting time and the virtual number of retrials. In all above
mentioned works, it is assumed that if a batch of primary customers arrives in
the system and the server is free, then one of the customers start to be served
and the rest of them leave the service area and repeat their demand later and
independently of each other. Later Moutzoukis and Langaris [15] extend the
above results by considering a multiclass retrial queue with correlated arrivals,
accepting n-types of customers with non-preemptive priorities and vacations,
where p-classes form ordinary queues and served according to their priority and
the rest n — p classes form retrial queues.

Recently Falin [8] investigates a new batch arrival retrial queue which oper-
ates as follows. If the server is free at an arrival epoch, then one of the customers
starts to be served and the rest of them form an ordinary queue waiting to be
served. In contrast, if the server is busy at an arrival epoch then the whole
batch of customers join the retrial box.

In this work we generalize and extend the results of Falin (8], by studying a
retrial queue with correlated arrivals, accepting n-types of customers, Py, ..., Py,
say. We always assume that at a batch arrival epoch, P; customers in batch have
priority over Pj, j > i, to occupy the server. More precisely, if at a batch arrival
epoch the server is idle then the customers of the highest priority in the batch
form an ordinary queue and start to be served, while the rest of them join their
corresponding retrial box. On the other hand, if at an arrival instant the server
is unavailable then all the customers in batch join their corresponding retrial
box. Whenever the server phases an empty ordinary queue, upon a service
completion, departs for a single vacation. Upon returning from the vacation the
server remains idle awaiting the first arrival either from outside or from a retrial
box. Any retrial customer repeats his demand independently to each other after
a random amount of time different for each type, and when the server is in the
idle mode (that is when the server returns from a single vacation).

Note here that our model is of gated type. When the server is idle the gate
opens. When the server is occupied, either by the customers of highest priority
in an arriving batch or by a retrial customer, the gate is closed. While the server
is working, arriving customers leave the service area and join their retrial box.



Upon the server phases an empty queue after a service completion, departs for
a single vacation. The gate remains closed during vacation period and will be
opened again upon the server returns from the vacation period.

From the above description it is clear that the presented model generalize
and extend the results of Falin, introducing correlated arrivals, many classes of
customers, priorities and vacations. Clearly the assumption of correlated ar-
rivals is valid and common in communication systems and computer network
technology (see Sidi [17], Sidi and Segall [16], Takahashi and Takagi [18], Taka-
hashi and Shimogawa [19]) where an arriving message (corresponds to a batch
in the model) contains several priority packets (classes of customers). The pre-
sented model is well suited to model computer network streaming multimedia
applications. The normal queue (that is formed when upon a batch arrival the
transmission medium is idle) is similar to an 1-persistent carrier sense multiple
access (CSMA) system. When the oldest packet in the normal queue detects
that the transmission medium is free, transmission begins immediately. Clearly
different type of packets requires different transmission time. If communication
medium is unavailable upon a message arrival, then the packets are sent to a
retrial queue which is analogous to a non-persistent CSMA system. The retrial
packets are retransmiting after a random amount of time (different for each type
of packets) before checking the status of the medium again. This procedure is
repeated until the retrial packet finds the transmission medium idle,

The presented system can be used to model streaming voice or video in
multimedia applications, where transmitted packets are used for playback upon
reception and also stored for future use. Arriving messages are consisted of
packets that are indexed according to their importance for immediate playback.
The packets of the smallest index in the message are those of highest priority
and are used for immediate playback. Furthermore the packets of smallest index
in batch are time sensitive in that, if they are not transmitted within a given
time threshold, they are effectively useless. If the arriving message detects the
communication medium idle, then the packets of the smallest index (highest
priority) are buffered and transmitted immediately one by one. These packets
corresponds to the priority customers. The rest packets in the message, can
still be used for later playback from the stored copy of the stream, but their
transmission time is no longer important. Moreover, arriving messages that
detects the medium unavailable are also used for later playback, while the re-
transmitting time depends on the type of packet. These packets correspond
to the retrial packets. In addition, a close down for a check (vacation) of the
medium is necessary, either just after the end of the transmission of the priority
packets (packets that need immediate playback), or after the transmission of a
retrial packet. Note here that due to the time sensitivity of the priority packets,
the check of the communication medium begins after the transmission of all
these packets. On the other hand after the transmission of a retrial packet
(from the stored copy of a stream) the medium needs immediately a check.

The article is organized as follows. A full description of the model is given
in Section 2. In Section 3 we give some useful preliminary results and a theorem
on which the whole analysis is based. The steady state analysis of the system



is given in Section 4, while the server state probabilities, the mean number of
customers in ordinary queue and the mean number of customers in each retrial
box separately, are obtained in Section 5.

2 The model

Consider a single server queueing system where customers arrive in batches of
random size according to Poisson process with parameter A. Moreover, each
batch may contain customers of different types, P;, i = 1,2,...,n, say. We
assume that at the instant of batch arrival, P; customers have always priority
to occupy first the server, over P; customers, j <4, V4,7 = 1,...,n, that also are
included in the arriving batch. Let K;, i = 1,...,n, the number of P; customers
in an arbitrary batch and let also

g(g‘:l) = Pr(il = -‘Til) = Pr(Xl =Tpy X1 = mn)’ Q(QI) =0,
G(z) = EZT:Q] g(ﬁl)é% = E:?:o Z:FU 921, oy Tn) 27 250,
8G(z 8*G(z;)

— 989Gz -
gi 8z; J£1=ll’ ki = Oz 0z |§.1=l1‘

where in general for i = 1,..,,n, 0; = (0,0,...,,0), 1; = (0, ..., 1,...0),
L; = (mijmi+1> ---»xn}: E: = (0: "'70)wi:xi+l: "':xn):
* -
z,; Y = (0: ...,O,y, Tig1yeeny mn): kT = (miami—i-l: "')mk)J k >t

If an arriving batch finds the server idle, then the customers of the highest
priority in the batch, F;, ¢ = 1,...,n, say, form an ordinary queue waiting to
be served, while the rest P;, j > ¢, leave the system and join the jth retrial
box from where seek for service individually and independently to the other
customers, after an exponentially distributed time with parameter ;.

On the other hand, if the server is unavailable at the arrival epoch, then the
whole batch leave the system and the customers join their corresponding retrial
box.

Whenever the server becomes free, that is when upon a service completion
there are no customers waiting in the queue (the retrial boxes are not neces-
sary idle), he departs for a single vacation, the length of which is arbitrarily
distributed with distribution function (DF) By(z), probability density function
(pdf) by(z), Laplace-Stieltjes Transform (LST) 8,(s), finite mean values by and
mth moments E(()m).When the server returns from the vacation remains idle and
so available to serve the next arriving customer, either from outside or from a
retrial box. It is clear that the server’s idle period starts when the server returns
from the vacation. Moreover any retrial customer can find a position for service,
only when the server is in the idle mode.

From the above description it is clear that when the server is, either busy, or
on vacation, any new arriving customers join directly their corresponding retrial
box. Thus the presented model is of gated type. The gate opens, whenever the



server becomes idle. When the server is occupied, either by the customers of
highest priority in an arriving batch or by a retrial customer, the gate is closed
and the service area is not accesible for any new arriving customer. Upon the
server returns from the single vacation the gate will be opened and the server
will become available again.

The service time S;, of a retrial P; customer (the customers who upon ar-
rival find the server unavailable), i = 1,2, ...,n, is distributed according to an
arbitrarily distribution with DF B;(z), pdf b;(z), LST f;(s), finite mean value
b; and mth moments BS"‘). We also assume that the service time S} for the P,
customers, ¢ = 1,2,...,n, who upon arrival join the queue, is arbitrarily dis-
tributed with DF Uj(z), pdf u;(z), LST fi(s), finite mean value %; and mth
moments ﬂgm). Finally, all the above defined random variables are assumed to
be independent.

3 Preliminary results

In this section we obtain some preliminary results and state a theorem, which
is important for the analysis that follows.

Let A;(t), i =1,...,n to be the number of P; customers that arrive in the
interval (0,%) and define

SEI (t) = Pr[Ai(t) = k,’, i 1, ...,n],
then it is easy to understand that
Eoo Sk (t)gf‘ — ¢~ M1=G(z))t

The generalized completion time of a retrial P; customer, i = 1,...,n, is
defined as the time elapsed from the epoch at which he commences service until
the epoch at which the server is idle for the first time. Clearly from the model
description, the generalized completion time of a retrial P; customer equals his
service time plus the vacation period that follows. Note that due to the gated
type of the model, the server remains always idle upon returning from a vacation.

Let us define by d{"’?(t} the pdf of such a generalized completion time during
which k,, r = 1,...,n new P, customers arrive in the system. Then it is easy to
understand that

<%} i i k
Di(s,2)) = X g, [0 e dD (0)28 = Bi(s + X — AG(21))Bols + A — AGlzy))-
(1)
Define fori =1, ...,n,
pi = Agibi, Poi = Agibo.

Now we are ready to state the following theorem. The proof of the Theorem
1 is based on the concept of the generalized completion time and is similar to
the proof of Moutzoukis and Langaris [15] and it is ommited here.



Theorem 1 For any permutation (i1,ig,..,i,) of the set (1,2,...,n) and for
(@) |2i,,| < 1 for any specific m = j+1,..,n and |z;| < 1 for all other
r=j+L.,nwithr#m, or(b) |z, | <1 forallr =9+1,...,n and P, > 1,
or (c) |z | <1 forallr=4+1,..,n and pi; > 1= p;,_, the equation

Zi; — Dij (0: Wi;_y (zij! "'}z‘in)) =0, (2)

has, for j = 1,..,n one and only one root, 2y = Tiy(Zig 000 %), 1 F T,
z;, = x;, say, inside the unit disc |zij1 < 1, where the vector wi,(zi;, ..., 2i,)
is defined by

Win(Fh i) = (Blpeati)s
Wiy (Zigs oy i) = Wig (i (Zigy ooy Zin ), Zigy ooy 5 )s
Wi (B i onZi,) = Wi, (3 (Zirprs ...,ziﬂ),z,-kﬂ, - N =
while

By =% i Prs £ Porm)-
Moreover for z;, =1, r =3+ 1,...,n and Pi;_, < 1 the root zi;(1,...,1) is the

smallest positive real root of (2) with x;,(1,...,1) < 1 ifpy; > 1 and zi, (1, ..., 1) =
Lifp;, <L

By differentiating both sides of (1), with respect to z;, at the point s =
0, z; = 1, we obtained fori =1,...,n

Pi = p; + Pais

which is the traffic intensity of the retrial P; customers.
Thus the total traffic intensity is given by

pr = (s + o) = A X, 9i(bi + Bo).

In the following sections we shall consider the system in steady state, which
exists if and only if p* < 1. Thus the condition p* < 1 is assumed to hold
from hear on. Note here that p; + py; represents the expected number of retrial
P; customers that arrive during the generalized completion time of a retrial P;
customer.

4 Steady state analysis

Let us assume that assume that the system is in steady state, so that pr < 1.
Let also Q;, i = 1,...,n, be the number of P; customers in the queue, and N;,
i=1,..,n, be the number of P; customers in the ith retrial box. Define finally

U;, busy with a P; customer, i = 1,...,n from the queue,
_ by, busy with a F; customer, i =1,...,n from the ith retrial box,
= 0, vacation,
id, idle,



the random variable that describes server’s state, and let for ¢ =1,...,n,

Pi(miky,2) = Pr(Qi=my Ny =k, =u,z <U; <z +dz), (3)
and
pilk;,x) = Pr(N, =k, & =b,z < B; <z +da), A -
po(ky,z) = Pr(N, =k, =0,z < By < z+dx), (4)
q(ky) = Pr(N, =k, { = id),

where W; is the elapsed time period of any random variable W. Define also for
i= LN

! oo ' .ok
P; (yi,z,7) = zm.;=0 ZZ‘:=91 pi(miaﬁla m)y;niéf
k
Pi(zy,z) = Z;_c::gl pilky, %)z,
k
Q(z) = ZE;QI ai(kq)z1"

By connecting as usual the probabilities (3), (4) to each other and forming the
above defined generating functions we obtain for i =1,...,n,

Pi(yssz1,2) =  P/{yi,2,,0)(1 - Ui(z)) exp[— (X — AG(z,))a],
Pi(z1,2) =  Pi(21,0)(1 - Bi(w)) exp[— (A = AG(z,))z],
AQ(z1) + Yoy aiziﬁ%@(él) = fgoo Po(z1,)no(x)dz, (6)
where 7;(z) = b;(z)/(1 — B;(z)), n;(m) = u;(z)/(1 — Uj(z)). Let us define
ki(z1) = Bi(A — AG(21)), ri(z1) = filA —AG(z1)), i=1,..,n
The corresponding boundary conditions are given by

P;(miaﬁho) = AZ_‘::*O +1 : m‘+1)9(1ﬁ1aﬁi+1 = 7_55,.5.1)

(5)

> pl(mi + 1, ky, 2)ny(z)de, i=1,2,..,n,
pi(k;,0) =  ai(ki +1)g(k; +1;), i=1,.,n
PO(E].,O) = 1—1[f0 pi(.&.laz m(ﬂf)d-ﬂ: +f O kl: )ﬂ;(m)dﬂf]
Forming the generating functions, we arrive easily for i = 1, ..., m,

('.Ui = Ti(éi))P;(yi: EZR) 0) = A[G(E: y‘-) = G(£:+1)]Q{§.1) - P;(Oailao)ri(él)(' )
T

Then setting, y; = 7i(2;), we obtain
A ")=6 “E)at) (8)

yi—Ti(z;)

P (yi,21,0) =
Moreover
P;(z,,0) = aiziaiz‘.Q(él)s

; (9)
Py(2,0) = i1 Pi(zy, 0)kiz1) + 20 Pi (0,21, 0)ri(z1)-



Integrating (5) with respect to z, we realise that P(z;,0) = P(z;)e (z,),
P. (y,,gl,O) = P (y-s.él)h-(;""-l)? where

A=AG(z A=AG(z
e.(§1) = ‘ﬁ;T;_]l)—) h-.(él) = jT((i‘l‘jl
Then relations (8), (9), becomes
' AlG(2T Yiy~g(e* Tilz1) =
hi(z)Pl(ysyzy) = A0 —21AG) (10)
ei(z1)Pi(z,) = aizié%:@(éﬂ:
eo(zy)Po(z;) = Z?:l ei(z1)Pi(z,)ki(z,) (11)

+3Q(z1) T, (G2} &) — Gat )]

Moreover (6) becomes

AQ(z1) + X, 0z 2 Q(z1) = eolzy)Po(zy)kolz:)- (12)

Note here that if we exclude the concept of vacations, assume that any
batch contains only one class of customers and that the service time § = 5,
then the above defined generating functions Q(z1), Pi(z), P,; (yi,2;) becomes
Q(z), P(2), P'(y, z) respectively. In that case our model yield to that of Falin
[8]. More precisely, the generating function of the total number of customers in
the system in page 4 in Falin (8] (P(y, z)), is connected with the corresponding

7

in our paper Q(z), P(z), P (y,z) with the following relation,

P(y,2) = Q(z) + y[P(z) + P (3, 7)].

Substituting (11) to (12), we arrive after manipulations to the n-dimensional
partial differential equation

Z?zl oz — Di(oaéz)]é%Q(El) + Al - kO(EI)F(él)]Q(El) =0, (13)

where ‘
Di(o’gl) = ki(él)kO(El)a 1= 1: ey Ty

Flz) = YL,(G( ") - 6(zz,,)).

It is clear that, in order to obtain the generating functions (10)-(11) we have
to solve first equation (13), which hardly can be solved. Our objective now
is to investigate the mean number of customers both in priority queue and in
each retrial box separately, by using the relations obtain so far and a special
methodology used first in Falin [6].



5 Performance measures

To proceed to the main analysis we have to calculate at point y; =1, z; =1,
the generating functions (10)-(11).

Theorem 2 For p* < 1, the generating functions (10)-(11), at point y; =
1, z; =1, are given by
Pt(rl_l) = }‘Ei(gi_ng(.]zl))a i=1,..,n,
P;(lz;l..l} = ’\g:ﬁ‘iQ(ll)J i= 1,...,'?’1,,
Po(1;) = Abo{Xi;g:+ QL[ - X, 91}

-

- 1—
QL) = 14+Abo+>0, Agl[@i—bi—bo]

(14)

where gf = 572 g2=1;
Proof: Let us define
N(Qlaéﬂ =Q(z1) + Lo Pilz) + X P£ (Y3, 21)- (15)
Setting in (10) y; = 1, z; = 1; we obtain easily
Pl 1) = Mina@(le)y %= Ly
while the second of (11) becomes
Po(Ly) = bo S0, 2 + M5 Q(Ly)- (16)

Substituting the first of (11) to (13) we easily arrive at,

- koiz—l_)g(ZI z - P; fi) [D:(0,2,) — 2] (17)

i=1

Consider now any arbitrary permutation (i1,...,%,) of the set (1,2,...,n). Then
using Theorem 1 and replacing repeatedly in (17) z;,; the corresponding root
i, (2 +1) for j =1,. — 1, we could eliminate all except one term of the left
hand side of (17). After manipulations we arrine fori = 1,...,n in

P(1l) = 2£Q){a1 + 2o + iy Mg} (@5 — b5 — Bo)] + g¥(p* — 1)}
(18)
Substituting (18) in (16) and using the fact that N (1;,1;) = 1, we obtain
after some algebra

1 —g"
QL) = 1+ Xbg + > q Agf[a; — b; — bo]’ )

Replacing (19) in (18) and (16), we arrive at the first and third of (14) respec-
tively. O




Theorem 3 The mean number Q, of Py, k=1,.,n customers in the queue
is given by

QL) | PG ™)

Qe="—5 Byt =1 (20)

Proof: Setting z; = 1, in relation (10) we arrive at

P;(yk,ll) = Mz Q(1,) (G} :;)_‘“10(12)] '

Differentiating at point yx = 1 we easily obtain relation (20) and the theorem
has been proved. ([

Define now for every k= 1,...,n,

me= 2ZE|. ) {1+ (A on)bo + 0y Agi — AT, i

A g Oril9i — 01)} — Mgk — Spasy (ox — 07) iy 00 228,
+AQ(l1)5{k>1}{Ez--2 Okigis — Zz—kJrl Bk%%kl'zk_l‘
892G (2! 8°G(z;
— i Ok G ) | ye — O ‘—azgg‘—)lg;ﬂ;}
+Agi{3 T[98 + 57 (g: — 5)Q(L)] + Po(Ly) (3 — Bol},
- (21)
where Or; = a;(b; + by)/(or + ;).

The next step is to obtain the mean number of Py, k = 1,...,n customers in
each retrial box separately.

Theorem 4 The mean number Ny of Py, k = 1,...,n customers in each retrial
boz, can be found as a sulution of the following system of linear equations

1= A Okl Ve — Age >0 0iNi = A1 - Q(1,)) > Bikgri + T,

(22)
where Ty, is given by (21).
Proof: It is clear that
= 3@ z AP;(z 6P 1,z
Nk ( 1)|£1—1 it Z ( 1 Igl— + Z ( l)l (23)

Differentiating now the relations (10), (11), we obtain 8P;/8zx, 8P, /8z; as
functions of 8Q/8z; and 92Q/dz0z. Clearly, by differentiating relation (10),

10



(11) we obtain

¥
aP; (1.2z,) _ - 8Q(z)) Agrgi —(2)

szz {51=11 = Agii Bz |51=ll + y;g Ui
8Py(z, 7 9%Q(z, 226,58 (g: -0l QM1 )

a.gf )|£1=lz = aibi asz(aEze) lgy=1, + =2 (gz 59N, i=1,.yn
9Po(z,) 7 8°Q(z;) 7 9Q(z;)

Buz: |:i1=.l1 = Z:?=1 aiboﬁ.rﬁ‘?r|51:11 + (A i O,’k)bo EETS |51=-1—1

3
+AgkPo(Ly)[54 — bol-
(24)

The main problem now, is to obtain a formula for 82Q/82,0z;.
Following the methodology of Falin [6] and using relations (10)-(12) we arrive
after manipulations at the following basic equation

AQ(z1)[G(z1) — Z?:i(G(éf e G(E:+1))]
Tl - DHEL = - - AGEIN L z).
(25)
Differentiate (25) twice, firstly with respect of z; and then with respect of
z;, setting finally z; = 1; we obtain after some algebra

X 32@(53) A N N g1 — 1 _ )\362(&])
(oo + ) Bar 071 |£,_=L1 (9 Ni + 9: Ni) + Agri( QL)) Ban Ig1:11

x[gi — dgis13(9: — 97)] — )\%fllklﬂl gk

—0rks13 (g8 — 98)] + AQ(L1) 0k, i>1}[9Ks
8%a(zD) 8%G(z1)

—0liok) Taraes =1y — O(k>i} oo
8%2G(z;

—5{k=i}—§z(?L)‘|5::L;]a

e
zi=1]

(26)
where
{ 1, if A holds,
dgay =

0, else.

Replacing finally (24) using (26), in (23) we arrive after manipulations at
(22) and this proves the theorem. O

6 Conclusion

In this work we study a new multiclass retrial queue with structured batch ar-
rivals, priorities and vacations, motivated by a recent work of Falin [8]. If an
arriving batch finds the server idle, then the customers of the highest priority in
batch form an ordinary queue, while the rest customers join their corresponding
retrial box. In contrast, if the server is unavailable at the epoch of a batch
arrival, all the customers in batch join their corresponding retrial box. Re-
trial customers seek for service individually and independently after a random

11



amount of time, different for each type of customers. Upon a service completion,
if the server phases an empty ordinary queue, he departs for a single vacation.
Upon the server returns from the vacation remains idle awaiting the first arrival,
either from outside or from a retrial box to start the service procedure again.
For such a system the mean number of customers that form an ordinary queue
upon a batch arrival are obtained in closed form. Using a special methodology,
first used in Falin [6], the mean number of customers in each retrial box are
obtained as a solution of a system of linear equations.
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A fixed point’s theorem on three complete metric spaces
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Abstract. A fixed point theorem for three mappings on three metric spaces is
proved. This result is a modification of the result of Nesic’' [1] from two mappings of a
metric space into itself, to three mappings of different metric spaces. We have modified
the methods used by Ne§ic¢' [1] and by Jain, Shrivastava and Fischer [3]. We also show
that the Theorem of Nung [2] is a corollary of our result and that it is sufficient the
continuity of only one of the mappings. An application of our result is presented.

Keywords: fixed point, metric space, complete metric space

1. Introduction
In [1], the following theorem is proved:

Theorem 1.1 Let (X,d) be a metric space and S,T be two mappings of X into
itself, satisfying the following inequality:
[1+ pd(x, )]d(Sx,Ty) < pld(x,Sx)d(y,Ty)+d(x,Ty)d(y, Sx)]+

+ qmax{d(x, y), d(x, 50, d(y,Ty),%[d(x, 1Y)+ d(y, 591}

forall x,ye X, where p=0 and 0<g<1.

If (X,d) is (S,T)-orbitally complete metric space, then S and T have an unique
common fixed point u in X .

In [2], the following theorem is proved:
Theorem 1.1 Let (X,d,),(Y,d,),(Z,d,) be three complete metric spaces and T be
a continuous mapping of X into Y, S a continuous mapping of ¥ into Z and R be a
continuous of Z into X , satisfying the following inequality:
d,(RSTx, RSy) < cmax{d,(x, RSy),d,(x, RSTx),d,(y,Tx),d;(Sy, STx)}
d,(TRSy,TRz) < cmax{d,(y,TRz),d,(y,TRSy),d,(Z,Sy),d,(Rz, RSy)}
d,(STRz,STx) < cmax{d,(z, STx),d;(z,STRz),d,(x, Rz),d,(Tx,TRz)}
for all xe X,yeY and zeZ, where 0<c<1. Then RST has an unique fixed point

ue X, TRS has an unique fixed point veY and STR has an unique fixed point we Z.
Further, Tu =v,Sv=w and Rw=u.
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In this paper we will give a generalization of Theorem 1.2 modifying the results of
Nesic' [1]. We will also show that in Theorem 1.2 it is not nescessary the continuity of
the three mappings, but it is sufficient the continuity of only one of them.

An application of our result is presented.

2. Main results

Theorem 2.1 Let (X,d|),(Y.d,),(Z,d,) be three complete metric spaces and
I''X—>Y,8:Y—>Z and R:Z — X be three mappings from which at least one of them
is continuous, satisfying the following inequality:

[1 + pd (x,RSy)+ pd,(y,Tx))d,(RSy, RSTx) <
< pld, (x, RSy)d,(Sy,STx) + d, (x, RSTx)d, (y,TRSy) + d, (x, RSy)d, (v, Tx)] +
+ gmax{d,(x, RSy),d (x,RSTx),d,(y, Tx),d,(STx, Sy)} (D)

[1 + pd,(y,TRz)+ pd,(z,5y)ld,(TRz,TRSy) < :
< pld,(y,TRz)d,(Rz, RSy) + d,(y,TRSy)d,(z,STRz) + d,(y, TRz)d, (z, Sy)] +
+ gmax{d,(y,TRz),d,(y,TRSy), d;(2,Sy),d,(RSy, Rz)} 2

[1 + pd,(z,5Tx)+ pd,(x,Rz)1d,(STx,STRz) <
< pldy(z,5Tx)d,(Tx,TRz) + d,(z,STRz)d, (x, RSTx) + d,(z, STx)d,(x,Rz)] +
+ gmax{d,(z,S8Tx),d,(z,STRz),d,(x, Rz),d, (TRz,Tx)} 3)
forall xe X,yeY,zeZ, where p>0 and 0<q <1. Then RST has an unique fixed
point c€ X, TRS has an unique fixed point €Y and STR has an unique fixed point
y€Z. Further, Ta= 3,S8=y and Ry =«.
Proof. Let x, € X be an arbitrary point. We define the sequences (x,),(»,) and

(z,) in X,Y and Z respectively as follows: '

xn :(RST)"xO’yn :Txn—l!zn‘ :Syn

for n=1,2,...

By the inequality (2), for y=y, and z=z_, we get:

n-1
[1+ pdy(¥,,¥,)+ Pd;(2,.,2,)1d, (¥, Yt <
< Pl (0 ) (%15 %) + Ay (3,5 9,1)d3(2,21,2,) + Ay (3,5 ,)d5 (2,1, 2,)] +
+ qmax{dy(¥,, ¥, &y (V> Vour 1,45 (2,1, 2, )., (%, %, )}
from which it follows:
&y (Vs Vo) S qmaxi{d, (¥, ¥, ), (x,,%,.,),d5(2,,2, )} = gmax 4
where 4 = A G W A T (2,,2,)} -
If maxA=4d,(y,,5,,),then we have:
Ay (V> Yoot) S48y (Vs V)
and since 0<gq <1, it follows d,(y,,»,,,)=0.
Thus we have:

Rt s e e e e S )
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d2 (yn! y}h\l) S g max{dl (xn H xn-l )3 d3 (Zn9 zn—l )} (4)

In the same way, by (3), for x=1x,_, and z =z, , we get:
[]‘ o pd3 (Zn ] 2.!1) + pdl (xlr-l 2 xn)]dfi (zn? ziﬁ—l) =
= p[dl(zn’ Zn)d'l (yn’ yn+l) + d} (Zn’ Zn+l)dl (xn—l ’ xn) + d3(2n7 zi:)d] (xn’xn)] +
h qmax{d3(znizn)9d3(Zn’zu+l)’dl(xnfl’xn)5d2(yn+l’yn)}
from which we get:
dylz

n?

zn+1) = qmax{dl (xn—lixn)’d3(zn—lﬂ zn)} (5)

In the same way, by (1), for y=y, and x=x, we get:
(1 + pd\(x,, %)+ Pdy (Y, Y1 (%, %,1) <
< pld(x,,%,)45(2,,2,0) + A, (%,,%,, )8, (Vs Vo) + 4, (x,:%,), (¥, Y]+
+ qmax{dl(xn?xn)!di(xlr’xn+])9d2(yn=yn+l)’d3(zn+17‘zn)}

from which we get:
dy(x,,x,,,) < gmax{d,(x,, %, ), &5 (Vs> Vo ) &5(2,,2,.1)}
and by (4) and (5) we have:
d\(x,,x,,,) < gmax{d,(x,.,x,),d;(z,.,,2,)} (6)

n?

Taking n equal with n—1,n—2,...., using (4), (5) and (6) we obtain:
d(x,,x,.,) < g max{d,(x,,x,),d;(z,,2,)}
dy (V> Vo) S ¢ max{d, (x,,%,),d5(2,,2,)}
&i(2,:2,.0) S g max{d (x; %, )4, (25250}

Since 0<g <1, the sequences (x,),(y,) and (z,) are Cauchy sequences with limit

a,f and ¥ in X,Y and Y respectively.
Suppose that the mapping S is continuous. Then by
lim Sy, =lim z,

n—w n—rw
we get:

Sp=r (7

By (1), for y=/f and x=x, we get:
[1 + pd,(x,,RSB)+ pdy(B,y,.)1d\ (RSB, x,,,) <
< pld,(x,, RS B)d;(S B, 2,.,) + dy (%, %, ), (B, TRS B) + d, (x,, RS B}, (5, y,,.. )] +
+ gmax{d,(x,, RS B),d,(%,,%,.1): &> (B> ¥, )45 (1> S B)}
Letting n tend to infinity, by the fact that S8 = y we get:
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[1+ pd\(a, RS §))d\(a, RS ) < qd, (e, RS B)

g
(@, RSp) < — = d.(a,RS )

from which it follows:
d(a,RSB)=0= RSf=« (8)
since

q <
1+ pd, (e, RS B)

g=1

By (2), for z=Sf and y =y, , we get:

[1 + pdy(3,,TRSB) + pdy(S P, 2, )\, (TRS B, y,1) <

< pldy(3,, TRS B)d,(RS B, ,) + dy (3, 7, ) (S B, STRS B) + d, (3, TRS B)d (S B, 2, )] +
+ qmax{d, (3, TRSB),dy (3, 7,1 )s s (SB, 2,),, (x, RS B}

Letting n tend to infinity, by (7) and (8) we get:
[1+ pd,(B,TRS §)1d,(TRS B, B) < qd,(TRS 3, B)
from which it follows d,(TRSS,8)=0 or

TRSp =4 ©)

By (7), (8), (9) we get:
TRSG =TRy=Ta=p
STRy = STa=Sp=y
RSTa = RSE=Ry=a.

Thus, we proved that the points «, S,y are fixed points of RST,TRS and STR
respectively. ‘

In the same conclusion we would arrive if one of the mappings R or 7 would be
continuous.

We emphasize the fact that it is sufficient the contiunity of only one of the
mappings 7,S and R.

Let we prove now the unicity of the fixed points e, 8 and .

Assume that there is &' a fixed point of RST different from « .

By (1), for y=Ta and x=a', we get:
[1 + pd(a’,RSTa)+ pd,(Ta,Ta")d,(RSTa, RSTa") <
< pld (e, RSTa)d, (ST, STa') +d (&', RSTa")d,(Tet, TRST ) + d, (&', RST &) d,, (Tx, Tar')] +

+ gmax{d (a',RSTa),d (a',RSTa"),d,(Ta,Ta'),d,(STe', STex)}
or
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(1 + pd(a',a)+ pd,(To,Ta)d (a,a’) <
< pld(a',a)d,(STa,STa' )+ 0+d (a',a)d, (T, Ta' )]+
+ gmax{d (e, a),0,d,Ta,Ta"),d,(STa',STa)}

or
[1+ pd,(a,a)d,(a,a") <

< pld,(e,a")d, (ST, STa') +
+ gmax{d,(a,a"),d,(Ta,Ta'),d,(STa,STa')} (10)

In respect of max{d,(a,a'),d,(Ta,Ta"),d,(STa,STa')} =max A we distinguish

the following three cases:
Case 1. If max 4 =d (a,a’"), we have d,(STa,STa')<d,(a,a’), and by (10) we

obtain:
[1+ pd,(a,aN)d (e, ) <

< pld(a,a")d,(STa, STa') +qd (a,a') <
< pd(a,a)d (o, ') +qd,(a,a').

By the above we obtain d,(a, ") < gd,(a,c") and since 0<q <1 we get:
a=a' (11)

Case 2. If maxA=d,(Ta,Ta"), we have d,(STa,STa')<d,(Ta,Ta'), and by

(10) we obtain:
[1+ pd (a,a"))d, (e, ") <

< pld(a,a")d,(STa, STa")+qd,(To,Ta'") <
< pd(a,a)d,(Ta,Ta")+qd,(Ta,Ta").

or

[1+ pd,(ct,a))d, (@, @) < [q+ pd, (@, @’)|d, (Te, Te)

d(a,a) < THPAEE) 4 ory 7,

1+ pd, (e, ')
from which it follows:
d(a,a")<rd,(Ta,Ta") (12)
where
0<p=dtpdlaa)
1+ pd (e, a")

since 0 <g <1.
Case 3. If max 4 = d,(ST«, Sta'), then the inequality (10) takes the form:
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(1+ pd,(a,ed (e, a") < pld,(a,&')dy(STer, STe') + qd, (STer, ST ')
g+ pd(a,a’)
1+ pd, (a,a")
di(e, ') < rd,(STa, STar') (13)

d(a,a") < d,(STe,STe')

Continuing our argumentation for the Case 2, by (2) for z=STa and y=Tca' we
have:
[1 + pd,(Ta',TRSTa)+ pd, (ST, STa"))d,(TRST e, TRST ') <
< pld,(Ta', TRSTa)d,(RST e, RST ') +d, (T’ ,TRSTx")d, (ST x, STRST cx)) +
+d,(Ta', TRSTa)d,(ST e, STe")] + g max{d,(Ta',TRST ),
d,(Ta', TRSTa'),d,(STe,STx"),d,(RSTex', RST x)}
or
(1 + pd,(Ta',Ta)+ pd,(STa, STa)d,(Te,Ta'") <
< pld,(Ta',Ta)d (a,a')+d,(Ta',Ta"Yd, (ST, STar) +
+d,(Ta',\Ta)d,(STa,STa')]+gmax{d,(Ta',Tea),
d,(Ta',Ta'),d,(STa,STa"),d (a',a)}
or
[1 + pd,(Ta',Ta)ld,(Ta,Ta")] < pd,(Ta',Ta)d,(a,a')+
+gmax{d (a',a),d,(Ta',Ta),d,(STa,STa')}
or
[1+ pd,(Ta",Ta)ld,(Te,Te'") < pd,(Ta' ,Ta)d, (a0, ") + gmax 4 (14)

In the Case 2, we have max 4 =d,(Ta,Ta') and by (14) we obtain:

[1+ pd,(Ta',Ta)ld,(Te,Ta') < pd,(Te!',Ta)d,(Te!,Ta)+qd,(Te, Te')
or
d,(Ta,Ta")<qd,(Ta,Ta').

Since 0 < g <1, we obtain:
d,(Ta,Ta")=0
and by (13) it follows that d,(«,a") = 0, so we obtain again the inequality (11).
In the Case 3, by (3) for x = RSTa,z=STa' and in the same way we obtain:
[1+ pd,(STa',STa)ld,(STa,STa') < pd,(STa',STa)d, (T, Ter) + gmax A.

Since in this case max 4 =d,(STa,STa"), we have d,(Ta',Ta)<d,(STa,STa')
and we obtain:
[1+ pd,(STa,STa')|d,(STe,STa') < pd,(STa,STa')d,(STa, STa') + qd, (ST, STax')
from which it follows
d,(8Ta,STa') < qd,(STa,STa').

m
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Since 0<¢g <1 we take:
d; (ST, STa') =0
and by (13) it follows d,(e,a")=0. Thus, again, in this case the following equality
holds:

!

[ A P S

In the same way, it is proved the unicity of S and y.
Application. Let X =Y =Z =[0,1]c R and the mappings defined as follows:
1 for yel0,1]
Tx=x,Rz=1and Sy=

1
— for =0
2 5id
We have:
1 for xe€]0,1]
RSy=1,TRz=1and STx=

l for x=0
2

RSTx=1,TRSy=1 and STRZ =1.

We have to show now that 7,R and S satisfy the conditions of Theorem 2.1 for

- and g = —3— Indeed:
2 4

For every x,y€[0,1] we have d,(RSy,RSTx) :|1—1|: 0. Then the verity of the
inequality (1) is clear since its left side is 0.
The verity of the inequality (2) is clear too, since d,(TRz,TRSy) =0,Vx,y €[0,1].

We consider now the inequality (3). We have

|l—1|—%, for x=0and 0<z<1

d,(STx,STRz) =1 2
[1-1]=0, for 0<x<1and0<z<l

We distinguish two cases:
Case 1. For x =0 and 0 <z <1, the inequality (3) takes the form

1 1 1 1
(1+p|z—5|+p|0f1|)5 < p(|z—5|—|0—1|+iz—1\-|0—1|+|z—5|-|0u1|)+

0-1|,t-0f}.

+qmax{|z—%|,|z—ll,

We get
1 _3p 1
1+ p)—<—=—|z——=|+plz-]|+q.
(Lo =—-la=C| plz=1+q
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For p :% and g = i—, we obtain

3s3|z—l|+l|z—1|+—
447 2
or
osiiz—l|+l|z—1|
z 2

for all ze[0,1].

Thus, the inequality (3) is satisfied.

Case 2. For 0<x<1 and 0<z <1, since d,(STx,STRz) =0, the inequality (3) is
satisfied.

Therefore, as a conlcusion, we have the mappings 7,5 and R satisfy all the

conditions of the Theorem 2.1 for p =% and g = % The unique fixed point is 1 for each

of the mappings RST,TRS and STR.

Corollary 2.2 Theorem 1.2(2] is taken by Theorem 2.1 for p=0. Further, it is
sufficient the continuity of only one of the three mappings.
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Abstract. We consider the control of a single-echelon inventory system under the (r, nQ, T)
ordering policy. Demand follows a stationary stochastic process and, when unsatisfied, is
backordered. Under a standard cost structure, our aim is the minimization of the total average
cost. In contrast to previous research, all policy variables (i.e. reorder level r, batch size O and
review interval 7) are simultaneously optimized. While total average cost is not convex, two
new convex bounds together with a Newsboy characterization of the optimal solution lead to
an exact algorithm with guaranteed convergence to the global optimum. Computational
results demonstrate that the inclusion of the review interval as a decision variable in the

optimization problem can offer serious cost savings.

Keywords: Supply chain; Newsboy; Inventory; Optimal; Stochastic demand.

1. Introduction
The practical value of periodic review inventory control policies, where ordering
decisions are taken in regular time intervals, is well established (e.g. Silver et al. 1998).

Although theoretically inferior from their continuous review counterparts in terms of average



cost performance (e.g. Veinott 1966 and Lee and Nahmias 1993), periodic policies offer
practical advantages. By not imposing continuous monitoring of inventory status, they can be
easily implemented in real production environments. By allowing for the routine overshoot of
the reorder point, respective models can accommodate lumpy demands without loss of
modeling accuracy. Hence, it is not surprising that the MRP logic, designed to deal with such
demand processes, effectively implements standard periodic review ordering policies (e.g.
Anderson and Lagodimos 1989 and Axsater and Rosling 1994).

Focusing on an established periodic review policy, the (r,nQ,T) policy, in this paper
we study the optimal policy variables determination for a single-echelon inventory installation
and propose an algorithm that guarantees cost-optimal control. While the system operating
assumptions (i.e. stationary demand, full backordering and cost structure) are common in the
field, there is an important differentiation from previous research. Earlier work has considered
the (v, nQ) policy, a reduced version of the (»nQ,T) policy, which assumes a fixed review
interval 7 and where only two policy variables need be determined (the reorder level » and the
batch size Q). In this paper all three policy variables (»,0,T) of the original policy are
simultaneously optimized, leading to solutions offering serious cost savings over those of the
reduced problem.

We start with a review of key previous findings. The (n.nQ,T) policy was originally
proposed by Morse (1959) as an adaptation of the (R, T) policy (also known as base-stock) to
cope with quantized orders. These occur when supplies are constrained to be multiples of
some basic batch-size O, usually reflecting some physical limitation of the supply process
(e.g. pallet-load, container load etc.). Considering the form of the policy, Veinott (1965)
demonstrated that the (s,5) policy is optimal for externally fixed batch-size and zero ordering
cost. Otherwise, the policy is clearly inferior compared to the more general policy, which is
the known optimal policy for unrestricted sunplies (e.g. Veinott 1966 and Federgruen and
Zipkin 1985). This was further supported by the numerical results in Wagner et al. (1965) and
Veinott and Wagner (1965) but who also suggested respective cost difference not to be large

when comparing both policies at their optimal setting.

24



For independent demands, Hadley and Whitin (1961), building on the results by
Morse, used Markov steady-state analysis to characterize the distribution of the inventory
position of the (r,nQ,7) policy as being uniform U(r, #+Q) irrespective of the demand
distribution. As recently proposed by Li and Sridharan (2008), this distribution remains
unchanged even for serially correlated demands. Using a general cost structure (the one also
used here), Hadley and Whitin (1963) modelled long-run average cost of the (nQ,T) policy
for Normal and Poisson demands. They also studied the cost function in terms of the policy
variables (», O,T). No analytical properties for the total cost were determined, so concluded
that optimal control can only rely on exhaustive search approaches. Numerical comparisons
with the (»nQ,T) policy showed only marginal éost-differences as well as a tendency for the
policy to often degenerate to (R, 7) at its optimal setting.

Considering the (r, nQ) policy, Zheng and Chen (1992) proposed an algorithm to
compute the ordering parameters (r and Q) that minimize long-run average cost for discrete
uncorrelated demands. Under the cost structure in Hadley and Whitin but omitting review
costs (since the policy assumes a fixed 7)), they proved average cost convexity in the reorder-
level r together with a Newsboy-styled condition at the optimum. While the cost behaviour in
0 was found erratic, Zheng and Chen proposed a convex bound, effectively identical to the
average cost function in continuous review (#, Q) policies (e.g. Zipkin 2000). Implementing
the algorithm, they numerically compared the (», #Q) and (s,S) policies and only found small
cost differences at the respective optima.

These papers, as well as a more recent by Larsen and Kiesmuller (2007) that models
average cost for the (r, nQ) policy under Erlang demand, all considered the review interval T
as fixed, thus not entering the optimal control problem. The only previous study that (to our
knowledge) considers T as a control variable is that by Rao (2003). Focusing on the (R, T)
policy under uncorrelated stationary demands, he showed that this can be analyzed as a
limiting case of the continuous review (r, Q) po_]icy. This allowed him to show that the total
average cost for the (R, 7) policy is jointly convex in both the order-up-to level R and the
review interval T. Therefore any convex optimization algorithm can be used for optimal

system control.
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In this paper considering the (r, nQ, T) policy in its unrestricted form we propose an
algorithm that guarantees convergence to the glcbal optimum in all three policy variables.

The rest of the paper is organised as follows: In section 2 we present the notation and
assumptions used through the paper. In section 3 the (», nQ, T) policy’s total average cost is
modelled. In section 4 bounds for the total average cost are proposed and some properties of
these bounds are obtained. An algorithm for the determination of the optimal policy’s
parameters is presented in section 5. In section 6 we give examples for the determination of
the optimal controls assuming Normal distributed demand, under different cost settings.
Finally some conclusions are given in section 7.

2. Notation and Assumptions

In this section we introduce the notation used tﬁgether with the assumptions underlying the
operation of the inventory system.

2.1 Notation

i The demand rate.

D(1) Random variable denoting cumulative demand through time ¢, i.e demand in the

interval [0, t] .

h p Inventory holding and backordering cost per unit per unit time respectively.
Ko Fixed ordering cost (per ordering decision).

Kr Fixed review cost (per review).

L Replenishment lead time.

R Upper starting inventory position limit (just after a review).

0 Basic batch size (just after a review).

I(R, O, f) Net inventory position at time t.

P Probability of ordering at any review period.

T Length of review interval.

a The a-service measure (non-stock-out probability).
¥ The functions x” =max {0, x} x" =max{0 —x}.

C(R, O, T) Total average cost (per review interval).
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2.2 Operating Assumptions

We study a single-item, single-echelon inventory installation controlled by (7,70, T) policy.
Inventory status is reviewed every a time interval of length T. In the event an order is placed
after a review, the order quantity is available after the elapse of a, deterministic and known,
replenishment lead time L. Material leaves the installation in response to specific customer
demands. Demand not satisfied from stock is backordered. The demand process is
stochastically non-decreasing in ¢ with mean fu, density f{x,) and cumulative distribution
function F(x, £). As is common in modelling cost we assume that cumulative demand has
stationary and independent increments (see Serfozo and Stidham (1978)). These assumptions
hold if the demand is modelled, for example, either as compound Poisson or Normal
processes (see Rao (2003)). Note that the same assumptions for demand process are also used
in Zipkin (1986) to obtain convexity propertieé for (r, Q) policy.

We also need to clarify the sequence of events within any review interval. (1) Replenishment

orders placed respective lead time L earlier are received. (2) Inventory status is reviewed and
a replenishment decision is taken. (3) Demand is realized. (4) Inventories and backorders are
measured and relevant costs evaluated.

3. The (r, nQ, T) Inventory Policy

The (¥,nQ,T) policy operates as follow: a) Inventory status is reviewed and ordering decisions
taken at regular intervals of length T, b) If the inventory position is found to be below a
reorder level r, a replenishment order is placed; c) Irrespectively of the taken decision the
starting inventory position after any review epoch is given by R-X(0), and follows a uniform
distribution U(r, R), where X(Q) follows a uniform distribution U(0,0) and R=r+0Q.

The size of an order (if it is placed) is nQ, where O a predetermined batch size and n the
smallest integer for which R-X(Q)=r. Note that for independent demands, it has been
established (see Hadley and Whitin 1963) that R-X(Q) follows a uniform distribution Uf(r,
r+Q). As it was recently shown, the same distribution holds even for time-correlated demands
(Li and Sridharan, 2008).

Remark 1. It is worthwhile to note that an alternative definition for (R, 7) policy can be

deduced setting Q= 0.
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This remark allow a unified treatment for (v, nQ, T) and (R, T) policies.

3.1. The cost function under (»,nQ,T) policy

In this sub-section we model the average cost of the system and we obtain the expression for
a-measure, which leads later to the Newsboy characterization of the optimal policy. We
consider the general four element cost structure proposed in the seminal analysis by Hadley
and Whitin (1963). In this context we assume linear holding and backordering penalty costs,
as well as two fixed cost elements: ordering cost per actual replenishment order and review
cost per review occasion. The review cost, K,, incurred every T time units at each review and
the ordering cost, K,, incurred at the review instants where actual replenishment orders are
released (so respective cost coefficient is multiplied by the ordering probability P,). As
discussed in Hadley and Whitin (1963), P, represents the probability that demand between
two consecutive reviews triggers an order at the second review so this clearly implies that
P,=Pr(Q - X(Q) <D(T)). Observe that P, depends on Q and T but does not depend on R.

So, the inventory holding and backordering costs at time # € [0,7'], have been pooled into the

following function:
G(R,0,1) = hE[(I(R,0,6)" 1+ pE[(I(R,0,1)"]
=hE[R-X(Q)-D(L+1))" ]+ E[R- X(Q) - D(L+1))7]

= h(R—%—#(L+f))+(h+p)5[(X(Q)+ D(L+6)-R)"]

+a@ o
d 2 [0=B |70ty M
R 0

:h(R—%——,u(LH)H

note that we use the facts that

E[(I(R, O, N]=E[(I(R, Q, 1)+ E[(/(R, O, 1)]
and

X(Q)+D(L+1) has density

1 Q
5 [Fy-xndx

Thus the average holding and backordering costs per unit time is
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H(R, 0.T) =% [G(r,0,0)at @)

and consequently the average total system cost per unit time can be expressed as:

K, 4K E

EL )= +H(R,0.T) )

Now we obtain the expression for a-measure of service. Since the a-measure is defined as the

non stock out probability we can easily see that
1 T
a(R,Q,T)=1-— [Pr(R- X(Q)~ D(L +1)) < 0d (4)
0

4. Total Cost’s Bounds and Properties

In this section we introduce two bounds to the cost function and present analytic properties
that form the basis for the system optimal control.

Since the ordering probability always satisfies the relation,0< P, <1, the following two

bounds for C(R,Q,T) directly prevail:

B(ROT) =+ H(ROT) 5)
and
BU (R,0,1)= E’-%:El + H(R,0,T) (6)

In the next lemma the optimal value of R is determined for given values of T"and Q.

Lemma 1. Let R(Q,T)=argminC(R,0,T)denotes the optimal R corresponding to fixed T
R

and Q, then R(Q, T) satisfies the condition a(R(Q,T),0,T) =fh—‘?— , where a(R(Q,T),0,T)is
+pP

the a-measure for this 7 and 0 values.

Proof. From ECLQ’T)
dR

=0 we obtain the following Newsboy style equation

T

fitp [Pr(R- X(Q)- D(L +#) < 0d =0

I

h—

or

h—(h+p)1-a(R,0,T)=0
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and finally we get
a(R(Q,1),0,T) =~ (7
h+p

Direct application of this result clearly reduces the problem state-space (by one variable), thus
facilitating optimal control parameters.

Notice that the optimal R for fixed T and Q is the same for the average cost per unit time, C(R,
O, T), and for its bounds, By(R, O, T) and By(R, O, T) so the next lemma follows easily:

Lemma 2. R(Q,T)=argminC(R,0,T) =argmin B, (R,Q,T) = argmin By (R0, 1)
R R R

Lemma 3. For every given T let R(Q;T)=argminC(R, Q,T)denotes the optimal R
R

corresponding to O, then By(R(Q;T), O, T) and By(R(Q;T), O, T) are increasing and convex
functions in Q.

Proof. Zheng (1992) in Lemma 4 prove that the function G(R(Q;T), O, ) is an increasing and
convex function of O so the same holds for the functions B,(R(Q; T), O, T) and By(R(Q:T), O,
T) (see also figure 1).

It is worthwhile to note that By(R, O, T) and By(R, O, T) represent the cost for systems, which
operate under a (7, nQ, T) policy but it forces to order at each review epoch (under different
fixed costs). In such circumstance it is know that these systems require Q=0 (Veinott 1966)

and consequently it is optimal for these systems to operate under (R, T) policies.
Lemma 4. Let R(0,T)=argminC(R, 0,T) denotes the optimal R corresponding to 7 for 0=0,
R

if D(t) is stochastically increasing linearly then B,(R(0,T), 0, T) and By(R(0,T), 0, T) are
convex function in 7.

Proof. From Rao (2003) Theorem 6, By(R, 0, T) and By(R, 0, T) are jointly convex in R and T
s0 BL(R(0,T), 0, T) and By(R(0,T), 0, T) are convex function in 7" (see also figure 2).

It is interesting to observe that in the above both B,(R(0,T), 0, T) and By(R(0,T), 0, T)

represent the optimal cost of (R,T) policies (by definition obtained from the (v,nQ,T) policy
with O =0) for given T. Therefore, the optimal (#,nQ,T) policy is bounded above and below

by specific (R,T") policies derived from the bounds in (5) and (6).
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The next result follows naturally.

Lemma 5. lim[B, (R, 0, T)~B.(R, 0, T)]=0

5. Optimal Control

In this section we present an algorithm for the determination of the optimal values for (R, O,
7). This algorithm converges to the optimal in a finite number of steps for any given accuracy.
Algorithm R*,Q*,T' = Min< R,nQ,T >Cost(K,,K,,L, u,0,h, p)

inputs: review cost, ordering cost, lead-time, demand distribution mean and variance,
holding and backorders cost coefficients

outputs: control parameters for order-up-to level R, order quantum Q (in multiples of a

quantum order Q,, review period interval T (in multiples of a time quantum Tj)

1. set C' =+w
2. for =T, 2%,: do
a. for 0=0;, 204. do
i. let R’:argfgninC(R,Q,T);
ii. let Cco" =C(R',Q.T), Bfff:mﬂinBL(R,Q,T);
1iis if € el
1. set C'=C%", RR=R,0'=0,T"=T;
iv. end if;
v. if BY' >C'break;
b. end for;

"

c. let B, —rgiQnBL(R,QaT)F

d. if B,>C" break;
3. end for
4. return (R,0,T"):
End.

The algorithm is guaranteed to terminate as the lower bound of the function goes to infinity as

T —+wand By (R(QO;T), O, T) is increasing and convex functions in @ and also
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éim B, (Ry,0,T) =+ . Therefore, the conditions in steps 2.a.v as well as 2.d will eventually

be met and the algorithm will terminate. The conditions are also sufficient:
1. For the case of step 2.a.v, there is no point in searching for any higher Q as it is
guaranteed that the cost function, being greater than the lower bound will always be
greater than our current incumbent value, as all other values in the range [T, Lx[0. ]
will yield higher costs (the lower bound is now increasing in Q).
2. For the case of step 2.d it is obvious that at the value of T for which the condition is
met, the sequence B; is increasing (otherwise it would have been impossible to have

found a cost value less than the lower bound) and thus, from now on the sequence

C, =ER11'(£C(R,Q,T) will always be above the current C’which becomes the global

optimum,

The previous results summarized in the following:

Proposition. The proposed algorithm converges to the optimal in a finite number of steps.

6. Numerical Results |

We have applied the proposed procedure to determine the optimal controls assuming Normal
distributed‘ demand with E(D())=tu and Var(D(t)) =tc’, with 4=10, =3, L=5 for a
number of different cost coefficients (the formula for total average cost assuming Normal
distributed demand is derived in the Appendix). In addition note (see Rao, 2003) that all

feasible reorder intervals must be at least 7__and demand rate u is sufficiently larger than o

(#>30) so that ut>>g+/t for al t21f . and consequently the probability of negative
demand is negligibly small for T>7_ . The results are shown in Table 1 below. The first

four columns in Table 1 determine the cost coefficients of the problem. The columns entitled
Ropt and Topt under the heading “(R,T) Policy Optimization” are the optimal controls of the
(RT) policy applied to the problem, and RTcost is the optimal cost of the (R, T) policy. The
columns #*, 0" and 7" under the heading “(R,nQ,T) Policy Optimization” denote the optimal
controls for the policy (R,nQ,T) when all three parameters are allowed to vary, and the

column denoted C*(R*,Q*, T") denotes the optimal value of the cost function of the (R »nQ,T)
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policy. Finally, the last 3 columns determine the optimal controls R" and Q" together with the
value for the optimal (R,nQ,T) policy when ihektime parameter (the length of the period) is
arbitrarily set to 1 and not allowed to vary.

The rows in bold are the cases where the (R,nQ,T) policy is strictly better than the simpler
(R, T) policy. As can be seen, the differences of the policies in terms of the optimal cost are
relatively small in all cases; in most cases, the optimal (R,nQ,T) policy reduces to the (R,T)
policy. Nevertheless, notice the important role the T parameter (length of period) can play in
the optimal cost determination. For example, for the case K,=250, K,=1, h=10, p=1, the
optimal (RnQ,T) policy is more than 270% better than the optimal policy determined by
fixing the parameter 7=1 !.

7. Conclusions

In this paper we developed an algorithm for computing optimal (», nQ, T). This algorithm is
constructed incorporating results for (#, Q) and (R, T) policies. To the best of our knowledge
only results for (v, nQ) policy, a special case of (r, nQ, T) policy with T=1, have been
presented by Zheng and Chen (1992) and recently by Larsen Kiesmuller (2007). The
computational findings presented in the previous section indicate serious cost savings when
the parameter T is a decision variable. In addition a close relation between the (¥, nQ, T) and

(R, T) is concluded. From B, (R,0,T) the optimal cost of the (R, T) is an upper bound for the

optimal cost of (, nQ, T). While the numerical results show that in many cases the two costs

coincide.
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Table 1. Optimal Control of (R, D), (BnO,T) & (R,nQ,T=1) Policies

L=5, p=10, 6=3 (R,T) Policy Optimization (r,nQ,T) Policy Optimization (r,nQ,T=1) Policy
Kr Ko h |p [Ropt [Topt [RTecost [r*=R*-Q* |Q*[T* |[C*(R*,Q*,T*) |r*=RI1*-Q1* |Q1*|C*(R¥,Q*T=1)
1 1 1 1 56,1] 124 7,98 559 0 12 7.98 54,93 0 8,07
1 1 1] 10| 6443 0,89 15,79 64,53| 0] 0,9 15,79 65,22] 0 15,83
1 1 1 100 70,93 0,76 22,32 71,29 0f 0,8 22,33 72,95 0 22,59
1 1l 10 1 44,79 0,97 15,51 44,89 0 1 15,51 44 89| 0 15,51
1 1| 10] 10 52,57 0,52 60,04] 52,48 0] 05 60,02 54,93 0 62,73
1 1| 100 1 37,3 087 21,78 37,36, 0 0,9 21,78 37,61 0 21,83
1] 50 1 1| 73,121 471 24,01 73,070 0] 4,7 24,01 31,5 47 24,62
1 50 1] 10f 8528 3,51 37,62 53,17 37| 0,8 37,26 54,36 37 37,34
1 50 1| 100 93,3 3,17 46,96 62,09] 35| 0,6 45,56 65,02| 35 46,02
1] 50 10 1| 50,78] 3,67 35,96 50,82| 0] 3,7 35,96 18,63| 37 37,22
1] S0 100 10[ 58,71 1,78 100,21 43,49| 18| 0,5 100,07, 45,46| 19 102,69
1| 50| 10| 100 67,26 1,28 186,37 55,18| 14 0,3 182,28 65,22 0 189,33
1] 50[ 100 1| 41,19 349 43,69 41,21 0] 3,5 43,69 10,28 35 45,54
| 50| 100 10 46,08] 1,39 181,22 46,09 0] 1,4 181,22 44,89 0 186,11
1| 250 1 1 100,1{ 10,11 51 100,05/ 0]10,1 51 4,5 101 51,58
1| 250 1) 10 120,49 7,54 73,77 48,35 77 0,9 72,2 48,89 77 722
1| 250 1] 100 130,55 6,94 86,54 60,01) 74| 0,7 82,15 62,1] 74 82,48
1| 250 10 1| 5593 7,7 71,03 55,93 0 7,7 71,03 0| 61 743
1] 250, 10| 10[ 66,75 342 176,45 35| 35| 0,5 175,08 37,49 35 176,38
1| 250/ 100 1. 43,8 741 80,3 43,8 0] 7.4 80,3 0,01 48 89,25
1] 250 100 10| 49,06 2,69 27828 49,08 0] 2,7 278,29 26,76| 27 285,24
250 1 1 1 100,1] 10,11 51 100,05 0[10,1 51 5493 0 257,07
250 1 1 10] 12049 7,54 73,77 120,11 0] 7,5 73.77 65,22 0 264,83
250 1 1] 100] 130,55 6,94 86,54 130,15 0] 6.9 86,54 72,95 0 271,59
250) 1| 10 1| 5593 7,7 71,03 55,93 0] 7,7 71,03 44,89 0 264,51
250 1) 10| 10| 66,75 342 17645 66,62 0| 3.4 176,45 54,93 0 311,73
250 1 10| 100 77,1 2,53 290,51 76,82 0] 2,5 290,53 6522 0 389,35
250) 1| 100 1 43,8 741 80,3 43,8 0] 7.4 80,3 37,61 0 270,83
250 1| 100] 10/ 49,06 2,69] 27828 49,08 0] 2,7 278,29 4489 0 386,13
250 1) 100f 100 56,64 135 837,18 56,87 0] 14 837,48 54,93 0 858,33
2500 50 1 1| 104,36] 10,99 55,63 104,55 0] 11 55,63 31,5 47 273,62
250 50 1| 10| 126,59 8,23 79,98 126,32) 0] 8,2 79,98 54,36, 37 286,34
250, 50 1| 100] 136,98 7,59 93,29 137,12f 0| 7.6 93,29 65,02 35 295,02
250 50, 10 1| 56,67 838 77,13 56,69 0| 84 77,13 18,63 37 286,22
2500 50 10 10| 68,12 3,7 190,2 68,1 0] 3,7 190,2 45,46 19 351,69
2500 50[ 10[ 100 78,86 2,75| 309,07 78,47 0 2,7 309,1 6522 0 438,33
250) 50| 100 1| 44,13] 8,08 86,63 44,14 0] 8,1 86,63 10,28] 35 294,54
250| 50| 100] 10| 4947 29 29581 49,46 0] 2,9 295,81 44,89 0] 435,11
250) 50| 100 100] 57,11) 145 872,17 56,87 0] 1.4 872,47 54,93 0 907.3
250/ 250 1 1 120,58 14,21 71,48 120,55 0f14,2 71,48 4,5] 101 300,58
250] 250 1| 10| 147,56 10,58 101,25 147,73] 0[10,6 101,25 48,89 77 321,2
250] 250 1| 100/ 159,04 9.8 116,3 159,05 0 9,8 116,3 62,1 74 331,48
250 250[ 10 1 59,05 10,71 98,08 59,04| 0[10,7 98,08 0] 6l 3233
250, 250, 10| 10 72,9 4,67 237,97 73,07 0 4,7 237,98 37,49 35 425,38
250] 250] 10[ 100] 85,01 3,48 3733 85,19 0 3,5 373,31 56,25 27 535,87
250[ 250 100 1 45,11 1034] 108,34 45,08 0[10,3 108,34 0,01 48 338,25
2501 250| 100[ 10| 50,72| 3,64 356,88 50,66 0 3,6 356,9 26,76| 27 534,24
250] 250] 100] 100| 58,64 1,76 996,49 586i I 1§ 996,64 54,93 0 1107,22
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Figure 1: Plot of the cost function and its bounds as a function of the base order quantity Q at their
minimum over R, for K,=50, K,=250, L=5,4=10,0=3,h=1,p=1,T=6. Both bounds are convex increasing.
Notice however that the function C(Q) has two local minimums (the first at 0=0). The upper bound
coincides with the cost function for 0<50.
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Figure 2: Plot of the cost function and its bounds as a function of the period length T at their minimum
over R and Q, for K,=1, K,=250, L=5, u=10, ¢=3, k=1, p=10. Both bounds are convex but not
increasing in 7. The function C(7) has again two local minimums (the first is the global minimum).
Also notice that the upper bound coincides with the actual cost function for 7>5.
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Appendix: Closed-form expressions for Normal demand
Assuming Normal distributed demand, we now obtain the total average cost and « -service

measure, Since we assume uncorrelated Normal distributed demand, the demand over ¢
consecutive periods is also Normal with E(D(¢))=tp and Var(D(t)) =tc?. In the following,

we make use of the standardizing ratios:

M, =

Z = R—Q~m|:_r—tp

i ‘GJ;}’R’ o’

We start by modeling average total cost C(R, O, T) in (3). So firstly, we need to model the

_ 8
ol ”

ordering probability P,. By standardizing the variable D(T) this can be expressed as:

1 (re-M

:Pr(u>w)=I—Pr(u£w)=1—E . " D(x)dx

where
u~N(0,l)and w~U(-M,,R, —M,)and ®() is the cumulative distribution function for the

standard Normal.
We can directly evaluate the integral above (using integration by parts) and obtain the average
fixed costs, say @(Q,T):

K. +K, K,

QD)= T TR,

o (@(Ry = M)+ (Ry = M )D(R, — M) — (M) + M, O(-M;) (9)
where @(.) is the density function for the standard Normal. We consider now average holding

and backordering cost, H(R, O, T). Since E(R-X (©@)=R —% =r +% we only need to

determine E(/(R,Q,t)”). By standardizing the Normal variable D(L+¢), this can be expressed
in terms of the variables u ~ N(0,1)and w~ U(0,R,,,)
So

oNL+i
R

L+t

IR 1=

g L +1 JZLH"'RL-H
ZLH

[ Or=xppas = T2 [ gx) - x4 2o (10)

L+

Using again integration by parts (twice), after some algebra a closed-form expression for

E(I(R,Q,1)7) is obtained. So, we finally get H(R, O, T) as:
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HR, 0, D=HR-Z-u+ 2B [ PR, + R, 410, R

2 2T » (11)
+(ZL+1 + RL+£)¢(ZL+I + RL+1 ) = (ZL2+.! + 1)(D(ZL—H) _ZL+t ¢(ZL+I ) _RL+I(2‘ZL+I & RLH)}dt‘
Thus, a closed-form expression for average total cost model under Normal distributed demand

is now fully determined as the sum of (9) and (11).

In order to apply the Newsboy-styled condition we also need to model a(R,Q,T). But, this is
nearly identical to the ordering probability P,, so it can be modeled analogously. Using

identical steps, we finally obtain:

1

TR {¢(ZL+.' + RL+1) e (ZL+r + RLH )CD(ZLH + R!.H) - ¢(ZL+1) - ZLM('D(ZLH)}dt (1 2)
L

aROT)=[

+i
which, determines a closed-form expression for thea -measure under the conditions

considered.
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EXISTENCE OF SOLUTIONS FOR A BOUNDARY
VALUE PROBLEM ON AN INFINITE INTERVAL

KYRIAKOS G. MAVRIDIS AND PANAGIOTIS CH. TSAMATOS

ABSTRACT. Based on a fixed point theorem due to Avery and
Henderson, we prove that a second order boundary value problem
has at least two positive solutions.

1. INTRODUCTION

Some of the most widely used theorems guaranteeing the existence
of one or multiple fixed points are the ones due to Krasnoselskii [19],
Leggett and Williams [10], and Avery and Henderson [3]. Among the
latest additions to this series of theorems are the ones due to Avery,
Henderson and O’Regan [4, 5, 6]. An innovating attempt to unify all
the results mentioned above, carried out by Kwong, can be found in
[9]. Roughly speaking, the essence of all these theorems is to generalize
the Intermediate Value Theorem for real functions of one real variable
to function spaces, which are Banach spaces of infinite dimensions.
One very important aspect of this generalization is to properly transfer
the meaning of the closed interval of the real line to such spaces. An
excellent discussion on this subject can be found in [2, 9, 19].

This paper is a sequel of [15]. The main result presented in [15] is
based on the Krasnoselskii Fixed Point Theorem and provides condi-
tions which guarantee the existence of at least one nonnegative solution
for the boundary value problem studied therein. Our goal in this pa-
per is to achieve multiple solutions for the ordinary version of the same
boundary value problem. To do this, we use a fixed point theorem
due to Avery and Henderson. This theorem, apart from guarantying
the existence of two fixed points, provides some additional information
about them, which varies depending on the way it is used. Here, we
obtain upper or lower boundaries for the values of these fixed points at
two predefined points of their domain.

2000 Mathematics Subject Classification. Primary: 34B40, Secondary: 34K10,
34B18, 47H10.

Key words and phrases. Avery-Henderson fixed point theorem, boundary value
problem on the half-line, multiple positive solutions, second-order differential
equations.
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Let R be the set of real numbers and R := [0, +c0). Also, for any
interval I C R and any set S C R, by C(I, S) we denote the set of all
continuous functions defined on I, which have values in S. Consider
the second order nonlinear differential equation

(1.1) o' () + f(t,z(t)) =0, teR*
along with the initial condition

(1.2) z(0) =0

and the boundary condition

(1.3) lim @/(t) =€

t—+oo

where f is a real valued function defined on the set R* x R, which is
increasing with respect to its second variable, nonnegative and contin-
uous, and £ is a nonnegative real number.

2. PRELIMINARIES AND LEMMAS

Definition 2.1. A function z € C(R*,R) is a solution of the boundary
value problem (1.1) — (1.3) if z is twice continuously differentiable and
satisfies equation (1.1) and the boundary condition (1.3).

Definition 2.2. Let E be a real Banach space. A cone in E is a
nonempty, closed set P C E such that

(1) ku+ dv € Pforall u,v € P and all 5, A > 0,

(%) u,—u € P implies u = 0.
Definition 2.3. Let P be a cone in a real Banach space E. A functional
¥ : P — Eis said to be increasing on P if ¢(z) < 9)(y), for any z,y € P
with < y, where < is the partial ordering induced to the Banach space
by the cone P, i.e.

z<y ifandonlyif y—ze€P.

Definition 2.4. Let v be a nonnegative functional on a cone P. For
each d > 0, we denote by P (¢, d) the set

P(y,d) :=={z € P: 9¥(z) < d}.

The results of this paper are based on the following fixed point the-
orem, due to Avery and Henderson [3].

Theorem 2.5. Let P be a cone in a real Banach space E. Let o and
7 be increasing, nonnegative, continuous functionals on P, and let 6 be
a nonnegative functional on P with (0) = 0 such that, for some ¢ > 0
and © > 0,

1(z) <6(z) < alz) and =] < O(2),
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for all x € P(v,c). Suppose there exists a completely continuous oper-
ator A : P(vy,c) — P and real constants a,b with 0 < a < b < ¢, such
that

O(Az) < M(z), for 0<A<1 and z€dP(9,b),

and either
(i) v(Az) > ¢, for all z € OP(v,c),
(i) 6(Az) < b, for all z € OP(6,1),
(i11) P(a,a) # 0, and a(Az) > a, for all x € 0P(a, a)
or
(4) v(Az) < ¢, for all z € OP(v,c),
(7)) 8(Az) > b, for all xz € OP(0,b),
(117) P(a,a) #0, and a(Az) < a, for all z € 8P (a, a).

Then A has at least two fized points x1 and z3 belonging to P(y,c) such
that

a < a(z), with 6(z;) <b,

and
b<0(zs), with ~(z2) <c

3. MAIN RESULTS

Let BC(R™*, R) be the Banach space of all bounded continuous real
valued functions on the interval R*, endowed with the sup-norm || - ||
defined by

|u|| := sup |u(t)], for we€ BC(R'R).
t>0
Definition 3.1. A set U of real valued functions defined on the interval
R* is called equiconvergent at oo if all functions in U are convergent

in R at the point co and, in addition, for each € > 0, there exists
T = T(e) > 0 such that, for all functions u € U, it holds

lu(t) — lim u(s)| <€, forevery t>T.
88—
Lemma 3.2. Let U be an equicontinuous and uniformly bounded subset

of the Banach space BC(R*,R). IfU is equiconvergent at 0o, it s also
relatively compact.

Let
E={yecC®R"R): y(t) = O(t) for t = +oo}.
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The set E is a real Banach space endowed with the norm || - ||, defined

by

ly(2)|
t+1’
Also, we define the following set K, which is a cone in FE

lyllz := sup for every y e E.
£>0

K:={z e E: z(0) =0, z(¢) > min{t, 1}||z||z, for t € R,
and z is nondecreasing}.
Let
O0<rm <rp<ry<1
and consider the following functionals
Yz)=z(r), z€K
O(z) =z(rs), z€K

and

a(z) =z(r3), ze€kK.

It is easy to see that o,7 are nonnegative, increasing and continuous
functionals on K, # is nonnegative on K and 8(0) = 0. Also, it is
straightforward that

v(z) < 0(z) < afz),
since z € K is nondecreasing on R*. Furthermore, for any z € K, we
have

v(z) = 2(r1) = ril|z||s,
6]

1
zlle < —v(z), zekK.
™

Additionally, by the definition of 8 it is obvious that
O(Az) =X0(z), 0<A<1, zeEK.
At this point, we state the following assumptions.

(H;) There exists M > £, a continuous function u : R* — R* and a
nondecreasing function L : R™ — R™* such that

fe <udl(fh), teR, yerr

and also

&rq + L(M) [/0“"2 su(s)ds + ry /:j u(s)ds] < M.
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(Hz) There exist a constant d € (0, 1], a continuous function v : R* —
R* and a nondecreasing function w : R — R* such that

fty) > v(wly), telf+oo), yeR™
(Hj3) There exist p;, p3 > 0 such that

Ei(n +1) < éri+w(p) / sv(s)ds + n-/ v(s)ds|,
d [0,r:]N[6,+-00) [r4,00)N[8,+00)
for: =1,3 and

%3(?"3 +1) < Mry < %1(?"1 +1).

Lemma 3.3. Suppose that assumption (Hy) holds and let ¢ > 0. A
function z € K(v,¢€) is a solution of the boundary value problem (1.1)—
(1.3) if and only if = is a fized point of the operator A : K(v,e) —
C(R*,R), defined by the formula

(3.1) Ay(z) =&t + /00 min{t, s} f(s,y(s))ds, for everyt € R,
0

or, equivalently,
(3.2)

Ay(t) = ft—i—fo sf(s,y(s))dsth/too f(s,y(s))ds, foreveryte R™.

Proof. First of all, we will show that operator A is well defined. Indeed,
for any € > 0 and any = € K (v, €) we have

riflzlle < z(r) <€

and

€
|zlle < —.
|

Also, for every t € R™, it holds that
z(t z(o €
O < qup 29 _ppp< £
1 + t U’EIR"" 1 + a T]_
Consequently, for any ¢t € R, using assumption (H;), we have

f@ﬂW)SMﬂLCﬂﬂ)Squ(i>,

1+f i

therefore,

/DDO f(s,2(s))ds < /Dm u(s)L (i) ds =L (:1) fow u(s)ds < oco.

Hence, the formula of operator A makes sense for any z € K (v, ¢).
For the rest of the proof, see [16]. O
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Lemma 3.4. Suppose that assumption (Hy) holds. Then, the operator
A is completely continuous and, for every e > 0, maps K (v, €) into K.

Proof. First, we will show that A maps K (v,¢€) into K. Let z € K (v, ¢).
Then obviously Az(t) > 0 for every t € R*, and Az(0) = 0. Addition-
ally,

(Az)'(t) =&+ ftm f(s,z(s))ds > 0, forevery teR"Y.

Next, we observe that, for any nonnegative real numbers ¢t and o, it

holds
- ;%cr for ¢t € [0, 1],
- alﬁcr for ¢t € [1, 00).
That is '
in{t, 1
(3.3) t> @%a, for every t > 0 and o > 0.
o

Moreover, it is not difficult to verify that, if ¢, s,0 are arbitrary non-
negative real numbers, then

< mj for t
it 41 {GTI min{c,s} for ¢ € [0,1],

o417 min{o, s} for t € [1,00).

Namely, we have

(3.4) min{t, s} >

in{t,1} .
Eli~—}mln{s,a}, for every ¢,s,0 > 0.
o

+1

Since the function f is nonnegative and using (3.3) and (3.4), we obtain,
for every t > 0 and o > 0,

Az(t) =&t + /OOO min{t, s} f(s, z(s))ds

m;nj{:,ll}g m?f’ll}/; min{o, s} f(s, z(s))ds

1 { JLH (ga + /0 " i Sh e, x(s))ds) }

2

, Azx(o)
= il .
min{f, 1} o+1
Therefore,
A
Az(t) > min{¢, 1} sup sc(a)’ for every ¢t > 0,
o>0 041

le.

Az(t) > min{t, 1}||Az||g, for every ¢t > 0.
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Consequently Az € K.

Also, similarly to [16], we can prove that A(K(y,c)) is relatively
compact and A is continuous. So, we have proved that the operator A
is completely continuous. OJ

Theorem 3.5. Suppose that assumptions (Hy)-(Hs) hold. Then the
boundary value problem (1.1)-(1.3) has at least two nondecreasing, con-
cave and positive on R™ solutions x, T such that

z(rs) > '%.%(7"3 + 1), z(ry) < Mrsy
and
#r) < B +1), 3(r) > M.

Proof. Set a = £(r3+ 1), b= Mry and ¢ = & (r; + 1). From Lemma
3.4, we have that A is a completely continuous operator, which maps
K(v,c) into K.

Now, let z € K (v, ¢). Then v(z) = z(r;) = ¢, so

(3.5) Izl =

™+ 1
Having in mind assumption (Hs), we get

v(Az) = Az(ry)
= &ry +/{; sf(s,z(s))ds + ?"1/ f(s,z(s))ds

> ¢ér +/ sf(s,z(s))ds +T1/ f(s,z(s))ds
[0,r1]N[8,+00) [r1,00)N[6,400)

2 €T+ /[(J,n]n[a,+oo) sv(s)w(z(s))ds + / v(s)w(z(s))ds

[r1,00)N[6,+00)

>&ér + f sv(s)w(z(8))ds + r1 / v(s)w(z(d))ds.
[0,71]N[8,+00) [r1,00)N[8,+00)
So, since z € K, we have

sv(s)w(d||z||g)ds + 1 f v(s)w(d||z||g)ds

[r1,00)M[6,+00)

Y(Az) = &ry +/

[U,T’1]ﬂ[5,+oo)

=¢&r +w(d||z||g) {f sv(s)ds + 7"1/ v(s)ds
[0,r1]N[8,+00)

[r1,00)N[4,+00)
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At this point, we use (3.5) and we get

) [/ sv(s)ds + ?"1/ v(s)ds}
L LariiiiBased [r1,:00)[6,+00)

Fit
=&ry +w(py) [ sv(s)ds + T1/ ’U(S)dSJ :
on]n [6,400) [r1,00)M[d,+00)
3),

Using hypothesis (H

v(Az) > &ry + w(cﬁ

we conclude that
Y(4z) > S (r +1),

so condition () of Theorem 2.5 is satisfied.

Now let z € 0K(6,b). Then 6(z) = z(r3) = b, so since z € K, we
have
x(rg) b

(i)

lzllz =M.

Consequently, by assumption (Hl), we have
0(Az) = Az(ry)

=£&ry + /T2 sf(s,z(s))ds +rq jrm f(s,z(s))ds
0 9

&t 0 /02 su(s)L (ff)s) ds+rs /: u(s)L (f(—i) ds

[s.¢]

<éry+ /m su(s)L(M)ds + 7"2/ u(s)L(M)ds

= &y + L(M) [ f " su(s)ds + rzzzmu(s)ds] -

G(Ax) _<_ M’I"g = b,

which means that condition (i:) of Theorem 2.5 is satisfied.
Now, define the function y : R* — R with y(t) = £. Then, it is
obvious that a(y) = § < a, so K(o,a) # 0. Also, since a(z) = z(rs) =

z(rz) _  a
a, we have Bl — Tarir 80

So

a
3 > —.
(3.6) Iels >

As in the case of the functional v above, we get
a(Az) = Az(rs)

> &rs —i-f sv(s)w(z(d))ds + 7“3/ v(s)w(z(d))ds.
[0,73]N[8,400) - [r3,00)M[d,+00)



EXISTENCE OF SOLUTIONS FOR A BVP ON AN INFINITE INTERVAL 47

So, since z € K, we have

a(Az) > Erstw(d||z|| g) [/[0 . )sv(s)d5+r3/

[r3,00)N[8,+00)

v(s)ds}
and using (3.6) we get

a(Az) > €rs +w(ps) [/
0

Therefore, by hypothesis (Hs), we conclude that
a(Az) > %(rs +1),

so condition (#iz) of Theorem 2.5 is satisfied.
At this point, we apply Theorem 2.5 to obtain that operator A has

at least two fixed points z and Z belonging to K (v, c) such that

sv(s)ds + 7‘3f v(s)ds} :

,r3]N[8,+00) [r3,00)N[6,+00)

z(rs) > %3(?"3 +1), z(ry) < Mry
and

F(r1) < %(ﬁ +1), F(rs) > Mrs.

This concludes the proof. O
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C'- APPROXIMATE SOLUTIONS OF SECOND ORDER
SINGULAR ORDINARY DIFFERENTIAL EQUATIONS

GEORGE L. KARAKOSTAS

ABSTRACT. In this work a new method is developed to obtain
Cl-approximate solutions of initial and boundary value problems
generated from a one-parameter second order singular ordinary dif-
ferential equation. Information about the order of approximation
is also given by introducing the so called growth index of a func-
tion. Conditions are given for the existence of such approximations
for initial and boundary value problems of several kinds. Exam-
ples associated with the corresponding graphs of the approximate
solutions, for some values of the parameter, are also given.
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1. INTRODUCTION

A one-parameter perturbation singular problem associated with a
second order ordinary differential equation is a problem whose the so-
lutions behave nonuniformly near the initial (or the boundary) values,
as the parameter approaches extreme levels. In this work we develop a
new method to obtain approximate solutions of some problems of this
kind. It is well known that under such a limiting process two situations
may occur:

i) The limiting position of the system exists, thus one can talk about
the continuous or discontinuous dependence of the solutions on the
parameter.

Consider, for instance, the following one-parameter scalar autonomous
Caushy problem

2"+ f(z,p) =0, z(0) = o, 2'(0) =B,

when the parameter p takes large values (and tends to +oo0). Un-
der the assumption that f satisfies some monotonicy conditions and it
approaches a certain function g as the parameter p tends to +oco, a geo-
metric argument is used in the literature (see, e.g., Elias and Gingold
[7]) to show, among others, that if the initial values lie in a suitable
domain on the plane, then the solution approximates (in the C*-sense)
the corresponding solution of the limiting equation. The same behavior
have the periods (in case of periodic solutions) and the escape times
(in case of non-periodic solutions). Donal O’ Regan in his informative
book [15], p. 14, presents a problem involving a second order differen-
tial equation, when the boundary conditions are of the form y(0) = a
(fixed) and y(1) = £, when n is large enough. It is shown that for a
delay equation of the form

i(t) + 2(t) = f(a(t - 1)),

when f satisfies some rather mild conditions, there exists a periodic
solution which is close to the square wave corresponding to the limiting
(as e — 01) difference equation:

z(t) = f(a(t —1)).

Similarly, as it is shown in Ch. 10 of the book of Ferdinand Verhulst
[22], the equation

' +z=cef(z, 2, e), (z,2') e DCR? (1.1)
(¢ > 0 and small) associated with the initial conditions

#(0) =ale), #(0)=0,
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under some conditions on f, has a periodic solution z(¢;£) satisfying

E1_141(1)14_ z(t;€) = a(0) cost.

Notice that the limiting value a(0) cost is the solution of (1.1) when
g=10.

ii) There exist some coefficients of the system which vanish, or tend
to infinity, as the parameter approaches a liming value. In this case we
can not formulate a limiting equation; however we have an asymptotic
approximate system for values of the parameter which are close to
the limiting value. The advantage of this situation is that in many
circumstances it is possible to have information on the solutions of the
limiting systems and, moreover, to compute (in closed form) the so-
called approximate solutions.

A simple prototype of this situation is, for instance, the differential
equation

d*u du
— +2— =0, =10
Edt2 + T +u , >,
subject to the initial values
du s
0)=a, —=b+—, 1.2
u(0)=a, Z=b+7 (12)

discussed in the literature and especially in the classic detailed book
due to Donald R. Smith [19], p. 134. Here the parameter € is small
enough and it approaches zero.

A more general situation, which we will discuss later in Section 5, is
an equation of the form

2" 4 [a1(t) + as(t)p"]2" + [b1(8) + b2(t)p*]z + agp™zsin(z) =0, ¢ >0
(1.3)
associated with the initial values

z(0;p) = 61 + dop”, 2'(0;p) = M +m2p". (1.4)

The entities u, v, m, o and 7 are real numbers and p is a large parameter.
The previous two problems have the general form

2"(t) + a(t; p)z'(t) + b(t; p)z(t) + f(t,2z(¢);p) =0, t >0, (1.5

where the parameter p is large enough, while the initial values are of
the form

z(0;p) = zo(p), 2'(0;p) = Zo(p)- (1.6)

It is well known that the Krylov-Bogoliubov method was developed

in the 1930’s to handle situations described by second order ordinary

differential equations of the form (1.5) motivated by problems in me-

chanics of the type generated by the Einstein equation for Mercury.
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This approach, which was applied to various problems presented in
[19], is based on the so called O’Malley [12], [13] and Hoppensteadt [§]
method. According to this method (in case f does not depend on z)
we seek an additive decomposition of the solution z of (1.5) in the form

z(t;p) ~ U(t;p) + U* (73 p),

where 7 := tp is the large variable and U, U* are suitable functions,
which are to be obtained in the form of asymptotic expansions, as

Ut;p) = Z Ue(t)p~*

k=0

and -
U*(tip) = ) Ur(t)p™™.

k=0

After the coefficients U, and U} are determined we define the remainder

Ry = Rn(t;p)
by the relation
z(t;p) = ) _[Uk(t) + Us(®)lp™ + Rn(t; p)
k=0

and then obtain suitable C' estimates of Ry (see, [19], p. 146). This
method is applied when the solutions admit initial values as in (1.2).
For the general O’Malley-Hoppensteadt construction an analogous ap-
proach is followed elsewhere, see [19], p. 117. In the book due to R.E.
O’ Malley [14] an extended exhibition of the subject is given. The
central point of the method is to obtain approximation of the solution,
when the system depends on a small parameter tending to zero, (or
equivalently, on a large parameter tending to +oo0). The small param-
eter € is used in some of these cases and the functions involved are
smooth enough to guarantee the existence and uniqueness of solutions.

In the literature one can find a great number of works dealing with
singular boundary value problems, performing a set of different meth-
ods. For instance, the work due to Kadalbajoo and Patidar [10] presents
a (good background and a very rich list of references on the subject, as
well as a) deep survey of numerical techniques used in many circum-
stances to solve singularly perturbed ordinary differential equations.
Also, in [21] a problem of the form

—eu'(8) + p(Ov' (1) + q()u(t) = f(z), ula) = a0, u(b) =,

is discussed, by using splines fitted with delta sequences as numeri-
cal strategies for the solution. See, also, [20]. A similar problem is
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discussed in [5], where the authors use a fourth-order finite-difference
method. In [11] a problem of the form

ey (t) + [p(w(@)] + a(z, y(2)) = r(z), yla) =, y(b) =5,
is investigated by reducing it into an equivalent first order initial value

problem and then by applying an appropriate non-linear one-step ex-
plicit scheme. In [17], where a problem of the form

ey’ (t) = f(z,9,2"), v(a)=ya y(d) =,

is discussed, a smooth locally-analytical method is suggested. Accord-
ing to this method first the author considers nonoverlapping intervals
and then linearize the ordinary differential equation around a fixed
point of each interval. The method applies by imposing some continu-
ity conditions of the solution at the two end points of each interval and
of its first-order derivative at the common end point of two adjacent
intervals.

A similar problem as above, but with boundary conditions of the
form

y'(0) —ay(0) = 4, /(1) +by(1) = B,
is presented in [1], where a constructive iteration procedure is provided
yielding an alternating sequence which gives pointwise upper and lower
bounds on the solution.

The so called method of small intervals is used in [23], where the same
problem as above is discussed but with impulses. In some other works,
ase.g. [4], [2] (see also the references therein) two-point boundary value
problems concerning third order differential equations are investigated,
when the conditions depend on the (small) parameter . The methods
used in these problems are mainly computational.

In this work our contribution to the subject is to give (assumptions
and) information on the existence and the form of a C'-approximate
solution Z(t;p) of the ordinary differential equation (1.5), when the
parameter p tends to +o0o, but by following a different approach: We
suggest a smooth transformation of the time through which the equa-
tion (1.5) looks like a perturbation of an equation of the same order and
with constant coefficients. The latter is used to get the approximate
solution of the original equation without using the Sturm transforma-
tion. Furthermore, these arguments permit us to provide information
on the estimates

z(t;p) — £(t;p)
and

%(f(t;p) - j(t;p)),
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as p tends to +oco, uniformly for ¢ in compact intervals. To handle the
"size” of the approximation we introduce and use a kind of measure of
boundedness of a function, which we term the growth indez.

Our approach differs from that one used (recently) in [3] for the
equation of the form

2" + (P’a1(t) + @)z =0, (L)

when p approaches +oco. In [3] the authors suggest a method to ap-
proximate the solutions of (1.7) satisfying the boundary conditions of
the form

z(0) = zo, (1) =mz(§). (1.8)
To do that they provide an approximation of the equation, and then
(they claim that) as the parameter p tends to ++oo, the solution of the
old equation approaches the solution of the new one. And this fact is
an implication of the following claim:
If a function 6(p), p > 0 satisfies §(p) = o(p~?), as p — +oo, then
the solution of the equation

v"(2;p) +v(2;p) = 6(p)v(z; ),
approaches the solution of the equation
v"(2;p) +v(zp) = 0.

However, as one can easily see, this is true only when v(z;p) = O(p"),
as p — +o0, uniformly for all z, for some r € (0,2). Therefore in order
to handle such cases more information on the solutions are needed.

This work is organized as follows:

In Section 2 we introduce the meaning of the growth index of a
function and some useful characteristic properties of it. The basic
assumptions of our problem and the auxiliary transformation of the
original equation (1.5) is presented in Section 3, while in Sections 4
and 6 we give results on the existence of C'-approximate solutions of
the initial value problem (1.3)-(1.6). In Section 4 we consider equation
(1.5) when the coefficient b(t;p) takes (only) positive values and in
Section 6 we discuss the case when b(¢; p) takes (only) negative values.
[lustrative examples are given in Sections 5 and 7. Section 8 of the
work is devoted to the approximate solutions of the boundary value
problem

z'(t) + a(t; p)7'(t) + b(t; p)z(¢) + f(t, z(t);p) =0, t€ (0,1), (L9)
associated with the boundary conditions of Dirichlet type

z(0;p) = zo(p), z(1;p) = z1(p), (1.10)
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where the boundary values depend on the parameter p, as well. Here
we use the (fixed point theorem of) Nonlinear Alternative to show the
existence of solutions and then we present the approximate solutions.
Some applications of these results are given in Section 9. In Section
10 we investigate the existence of C'-approximate solutions of equa-
tion (1.9) associated with the boundary conditions (1.8). Again, the
Nonlinear Alternative is used for the existence of solutions and then
C'-approximate solutions are given. An application of this result is
given in the last section 11.

2. THE GROWTH INDEX OF A FUNCTION

Before proceeding to the discussion of the main problem it is conve-
nient to present some auxiliary facts about the growth of a real valued
function f defined in a neighborhood of +oco. For such a function we
introduce an index, which, in a certain sense denotes the critical point
at which the function stays in a real estate as the parameter tends to
+00, relatively to a positive and unbounded function E(-). This mean-
ing, which we term the growth indez of f, will help us to calculate and
better understand the approximation results. More facts about the
growth index of functions will be published in a subsequent work.

All the (approximation) results of this work are considered with re-
spect to a basic positive function E(p), p > 0, as, e.g., E(p) := exp(p),
or in general E(p) := exp™(p), for all integers n. Here expl® (p) := p,
and exp(F)(p) := log®)(p), for all positive integers k. Actually, the
function E(p) denotes the level of convergence to +co of a function A
satisfying h(p) = O((E(p))*), as p — +oco. The latter stands for the
well known big-O symbol.

From now on we shall keep fixed such a function E(p). To this func-
tion corresponds the set

Ag = {h:[0,+00) : 3b € R : limsup(E(p))°|h(p)| < +00}.

p—too
Then, for any h € Ag we define the set
Ng(h) :={b € R : limsup(E(p))°|h(p)| < +o0}.

p—too

It is obvious that the set Mg(h) is a connected interval of the real line,
whenever it is nonvoint!. In this case a very characteristic property of

1For instance, for the function E(p) := p® and a function like A(p) :=e?, A >0
the set Ng(h) is empty.
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the function h € Ag is the quantity
Ge(h) :== sup Ng(h),

which we call the growth index of h with respect to E. To save space
in the sequel the expression with respect to E will not be used.

The simplest case for the growth index can be met in case of the
logarithm of the absolute value of an (entire complex valued function)
of finite order. Indeed, if F' is such a function, its order is defined as
the least of all reals « such that

|F(2)] < exp(]2]%),

for all complex numbers z. Now, the function f(p) := log|F(p + i0)|
satisfies

lim sup(E(p))°| £ (p)| < +o0
p—+oo

for all b < —q, with respect to the level E(p) := p. Thus we have
Gs(f) z —o

More generally, the growth index of a function A such that h(p) =
O(p*), as p — +oo, for some k € R, satisfies Gg(h) > —k. Also, we
observe that, if it holds

gE(h) > B,

then the function h satisfies
hp) = O([E@)]™), as p— +oo,
or equivalently,
|h(p)| < K(E(p))~",

for all p large enough and for some K > 0, not depending on p.
We present a list of characteristic properties of the growth index;
some of them will be useful in the sequel.

Proposition 2.1. If hy, hy are elements of the class Ag, then their

product hihy also is an element of the same space Ag and moreover it
holds

Gr(hih2) = Gg(h1) + Gg(ha).

Proof. Given hy, hy € Ag, take any by, by such that b; < Gg(hy), j =
1,2. Thus we have

lim sup(E(p))*|h1(p)| < +oo and limsup(E(p))*2|ha(p)| < +o0

p—+oo p—+co
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and therefore
lim sup(E(p))" % |h1 (p)he(p)| < limsup(E(p))™|hi(p)]

p—+00 p—+oo

x lim sup(E(p))*2|ha(p)| < +o0.
p—+oo

This shows, first, that h1hs € Ag and, second, that Gg(hih2) > b+ bs.
The latter implies that

Ge(hihe) > Gr(h1) + Gr(hs).
O

Lemma 2.2. Consider the functions hy, hg, -+, hy in Ag. Then, for
all real numbers a; > 0, the function 77, a;h; belongs to Ap and
moreover it satisfies

gE(iajhj) — min{Ga(h;) : §=1,2,-+- ,n} (2.1)

Proof. The fact that )77, a;h; is an element of Ag is obvious. To show
the equality in (2.1), we assume that the left side of (2.1) is smaller
than the right side. Then there is a real number N such that

QE(Zajhj) < N< mm{gE(hJ) rgp=1,2,:4- ,ﬂ,}.
j=1

Thus, on one hand we have

lim su a; YV |hj(
p—wl-oopz_: ] ) 1hi(p)]
. 22)
= limsup(E(p))" )| = 4
im sup(F (7)) (Z| 5(P)l) = +o0
and on the other hand it holds
limsup(E(p))™ |h;(p)| < +o0, 1=1,2,..,n
p—+o0
The latter implies that
hmsupZ:a,J )" |hi(p)] <Za3 limsup (E(p))"|k;(p)| < 400,

s j' 1 p—too

contrary to (2.2).
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If the right side of (2.1) is smaller than the left one, there is a real
number N such that

Jj=1

Thus, on one hand we have

T

limsup(E(p)” 3 a;1h;(p)] < +o0 (2.9)

p——+o0 j=1

and on the other hand it holds
limsup(B(p)) " (p)| = -+00,
p—+o0

for some jo € {1, 2,...,n}. The latter implies that

p—+co p—+0co

lim sup(E(p))"Y Z a;|h;(p)] > lim sup aj, (E(p)) " |hjy(p)| = +oo,

contrary to (2.3). O

The growth index of a function denotes the way of convergence to
zero at infinity of the function. Indeed, we have the following;:

Proposition 2.3. For a given function h : [rg, +00) — R it holds
Gp(h) = sup{r € R : limsup(E(p))"|h(p)| = 0}.

p—+oo

Proof. If b > Gg(h), then
lim sup(E(p))°|h(p)| = +oo.

p—-+oo
Thus, it is clearly enough to show that for any real b with b < Gg(h)
it holds

lim sup(E(p))°|R(p)| = 0.

p—+00
To this end consider real numbers b < b; < Gg(h). Then we have
lim sup(E(p))®* |h(p)| = K < +o0
p—-too

and therefore
lim sup(E(p))°|h(p)| = lim sup(E(p))®~*" lim sup(E(p))* |h(p)|

p—+oo p—+oo p—++00

= limsup(E(p))* K = 0.
p—s-+00
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In the sequel the choice of a variable ¢ uniformly in compact subsets

of a set U will be denoted by

t € Co(U).
Especially we make the following:
Notation 2.4. Let H(t;p) be a function defined fort € S C R and p
large enough. In the sequel in case we write

H(t;p) =0, as p — +o0, t € Co(S),

we shall mean that given any compact set I C S and any € > 0 there
is some po > 0 such that

|H(tp)| <e,
forallt € I and p = po.

Also, keeping in mind Proposition 2.3 we make the following:

Notation 2.5. Again, let h(t;p) be a function defined fort € S C R
and p large enough. Writing

Gr(h(t;p)) = b, t € Co(9),
we shall mean that, for any m < b, 1t holds
(E(p))™h(t;p) =0, as p— +oo, t € Co(S).

3. TRANSFORMING EQUATION (1.5)

In this section our purpose is to present a transformation of the one-
parameter family of differential equations of the form (1.5), to a second
order ordinary differential equation having constant coefficients.

Let Ty > 0 be fixed and define I := [0, Tp). Assume that the functions
a, b, f are satisfying the following:

Condition 3.1. For all large p the following statements are true:

(1) The function f(-,-;p) is continuous,

(2) a(-;p) € C*(I),

(8) There exists some 6 > 0 such that |b(t;p)| > 0, for all t and
all p large. Also assume that b(-;p) € C*(I) and sign[b(t;p)] =: ¢ =
constant, for allt € I.

The standard existence theory ensures that if Condition 3.1 holds,

then equation (1.5) admits at least one solution defined on a (nontriv-
ial) maximal interval of the form [0,T) C [0, Tp).
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To proceed, fix any ¢ € (0,T) and, for a moment, consider a strictly
increasing one parameter C?- mapping
v=o(p): [0,{] — [0,0(,p)]=:J
with v(0;p) = 0. Let ¢(-;p) be the inverse of v(-;p). These functions

will be defined later. If z(t;p), ¢t € [0,7] is a solution of (1.5), define
the transformation

Sp: @(5p) = Spa(ip): Graph(a(sp))( € OO, 8, R)) — O(JR),

where

z(t;p) _ x(¢(v;p);p)
Skl 0} = ylury) = = , vEJ 2.1
(Spalip))w) = yluie) Y(tp)  Y(é(v;p);p) 31)
Here Y'(-;p), which will be specified later, is a certain C*-function,
depending on the parameter p. We observe that

2'(t;0) = Y'(t;p)y(v;p) + Y (& p)v' (6 0)y (03 p), t € [0,1]

and
=" (tp = Y"(t;p)y(vi p) + 2Y"(t; p)0' (t; )y (v; )
+ Y ()0 (6 p)y (v;p)
+Y (& p)(W' (6 p))%" (vip), t € [0,].
Then, equation (1.5) is transformed into the equation
y'(vip) + A p)y' (vip) + B(tip)y(vip) + g(t;p) =0, ve J, (3.2)
where the one-parameter functions A, B and g are defined as follows:
_ Yt p)V' (60) + Y (5 p)0" (5 p) + alt; p)Y (8 0)v' (5 p)
Y (4 p) (v (t;p))? ’
B(t:p) = Y'(t;p) + a(t; p)Y'(;p) + b(t; )Y (t; p)
’ Y (t;p)(v'(£; p))? ’
f(& Y (& p)y(v;p); p)
t;ip) =
) = T G )2
We will specify the new functions v and Y. To get the specific form
of the function v(-; p) we set

v'(t;p) = v/cb(t;p), tel, e

c = signlb(t;p)], t e l.
In order to have v(t;p) > v(0;p) = 0, it is enough to get

ult; n) = fot cb(s;p)ds, t € [0,4]. (3.4)

Alt;p) :

where, recall that,
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Setting the coefficient A(¢;p) in (3.2) equal to zero, we obtain

2" (t; p)v' (£ p) + Y ()0 (1 0) + a(t; p)Y (¢ )V (£;p) = 0, t € [0, 1],
(3.5)
which, due to (3.3), implies that

Y'(t;p) + (i;((?;i)) - a(gp))m; p)=0, te0,d.  (3.6)

We solve this equation, by integration and obtain

i) = Yoy [ 150 oty

namely,

v(tip) = (A2 ep (— 1 / “asipds), te0d, @)

b(t; p) 2

where, without lost of generality, we have set Y (0;p) = 1.
From (3.6) it follows that

Y'(t;p)  V(p)  altip) (3.8)

Y(tp)  4b(tip) 2

from which we get

Y'(t;p) = - Y'(t;p) ( i;(é;f;)) + a(zp))

b(t; p)b" (t;p) — [V (t;p))* | a'(t;p)
1P p)? +=57)

Then, from relations (3.6), (3.8) and (3.9) we obtain
Y7(¢;p) + alt; p)Y'(t;p) + b(t; )Y (¢ )
b(tp)  alt;p)
¥ )(4&»( tip 2 )
(t; p)b" '(t;p)]* | a'(t;p) _
(t,pn? )

~Y(tp)(

=-Y'(¢t;

'—'H-\_/
3
—

I

— vt (L2

) @y~ 2

)
;) — (V(t;p))*  a'(t:p) +b(t-p)]
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Hence, the expression of the function B appeared in (3.2) takes the
form

oY bt a(t;p)\ (V(tp)  alt;p)
Blipk= [(45 2 )(4b(t;p) Tz )
(t p)b”(t p)—[b ( ip)]*  d(t;p) _
4[b(t; p))? 2 +b(t’p)]
') [altp))?
cbtp Klﬁb( t;p)] 4 )
_ b p)b (i p) — (&P d(tp) ,
e 5 )
5 '(tp)]? 1 [alt;p)?
16c( (t;p))°  4de b(t;p)
1 ¥(5p) _ oltp) 1
T de[b(tp)2 2eb(tp)
Therefore equation (3.2) becomes
y'(vip) + ey(v;p) = C(t, y(vip); p)y(v;p), v € J, (3.10)
where
oy B[t | laltp)?
COD) =" 6 bt T Bitin)
c V'(t;p) 4ol a'(t; p) _cf(t,Y(t;p)u)
AP | 2(tp) bER)Y (G
(Recall that ¢ = =+1, thus ¢ = 1.) The expression of the function

C(t,u; p) might assume a certain kind of singularity for u = 0, but, as
we shall see later, due to condition (3.13), such a case is impossible.
Therefore we have proved the if part of the following theorem:

Theorem 3.2. Consider the differential equation (1.5) and assume
that Condition 3.1 keeps in force. Then, a function y(v;p), v € J is a
solution of the differential equation (3.10), if and only if, the function

z(t;p) = (S, 'y(:0)) () = Y (& p)y(v(tip);p), t € (0,9

is a solution of (1.5). The quantities Y and v are functions defined in
(3.7) and (3.4) respectively.

Proof. It is enough to prove the only if part. From the expression of
z(t;p) we get

z'(t;p) = Y'(t; p)y(v(t; p); p) + Y (5 0)0' (8 0)y (v(t; p); p)



APPROXIMATE SOLUTIONS 63
and
o' (t;p) = Y (t; p)y(v(t; p); p) + 2Y" (; p)v' (t; 0)y' (v(t; ); )
+Y (& )" (& p)y (v(t; p);p) + Y (850) (V' (8 0)) " (v(t; p); p).

Then, by using (3.5), (3.2) and the expression of the quantity B(t;p),
we obtain

2"(t) + a(t; p)z’(t) + b(t; p)z(t) + f(¢, z(t); p)
= Y(t:0)( (50)° [y (v 9)i P) + B D)y (p)ip) + 9(6:7)| = 0.
U
To proceed we make the following condition:

Condition 3.3. For each j = 1,2, ..., 5, there is a nonnegative function
®; € Ag, such that, for allt € [0,T), z € R and large p, the inequalities

b (&) < @)t p) I,

, . (3.11)
6" (& p)| < Pa(p)|b(t; )7,

la(t;p)|* < @s(p)|b(t;p)],

1@(t5)] < () b(ti )], 12
|7 (t, 2;0)| < ®5(p)|2b(t; )| (3.13)

hold.
If Condition 3.8 is true, then we have the relation
v'(0;p) ;
0py | S VEDHOP), (3.14)

as well as the estimate

|C(t,u;p)| < %(Ih(p) + %(@2@) + ®3(p)) + %@4(19) + @5(p) (

= Py,
for all t € [0,7") and p large enough.

3.15)

4. ASYMPTOTIC APPROXIMATION OF THE INITIAL VALUE
PROBLEM (1.5)-(1.6) IN CASE ¢ = +1

The previous facts will now help us to provide useful information
on the asymptotic properties of the solutions of equation (1.5) having
initial values which depend on the large parameter p, and are of the
form (1.6).
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In this subsection we assume that ¢ = +1, thus the last requirement
in Condition 3.1 keeps in force with b(¢; p) > 0, for all t > 0 and p large
enough.

As we have shown above, given a solution z(t;p), ¢ € [0,7] of (1.5)
the function y(v;p), v € J defined in (3.1) solves equation (3.10) on
the interval J. (Recall that J is the interval [0,v(%;p)].) We shall find
the images of the initial values (1.6) under this transformation.

First we note that

y@m%i%m0=y(, = z(0;p) = zo(p). (4.1)
Also, from the fact that

z'(0;p) = Y'(0; p)y(0; p) + Y (0; p)v" (0; 2)¥/ (0; p)
and relation (3.6) we obtain

A I 1. b'(0;p) | a(0;p)
"0 ) =: — ; (4.2
y'(0;p) =t fo(p) o0 [a:o(p) + (4])(0;1}) e )330(}‘9)} (4.2)
Consider the solution w(v;p) of the homogeneous equation
w' +w=0 (4.3)

having the same initial values (4.1)-(4.2) as the function y(-;p). This
requirement implies that the function w(v;p) has the form

w(v;p) = c1(p) cosv + cy(p) sinwv, v € R,

for some real numbers c;(p), c2(p), which are uniquely determined by

the initial values of y(-;p), namely ¢1(p) = yo(p) and ca(p) = Ho(p).
Then the difference function

R(v;p) := y(v;p) — w(v; p), (4.4)
satisfies
R(0;p) = R'(0;p) =0,
and moreover
R'(v;p) + R(v;p) = C(t,y(v; p); p) R(v; D)
+ C(t y(v;p); p)w(v;p), ve

Since the general solution of (4.3) having zero initial values is the zero
function, applying the variation-of-constants formula in (4.5) we obtain

R@m)zﬁwﬂwﬁcwmw@mWM&m@+

(4.5)

. (4.6)
ﬁ/Kmﬁﬂmw@mm@m&
0
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where
K(v,8) =sin(v — s).
Observe that

ﬁﬁmmU—@wmmwsswﬂmwﬁ@@mv=v@w,veJ

and therefore

IR@sD) < PONG+PE) [ IR
0
Applying Gronwall’s inequality we obtain

|R(v;p)| < v(p)(eF®” —1). (4.7)

Differentiating R(v;p) (with respect to v) in (4.6) and using (4.7),
we see that the quantity | R'(v;p)| has the same upper bound as R(v; p)
namely, we obtain

max{|R(v;p)|,|R (v;p)|} < v()(e"P" = 1), veJ  (48)

By using the transformation S, and relation (4.8) we get the following
theorem:

Theorem 4.1. Consider the ordinary differential equation (1.5) asso-
ciated with the initial values (1.6), where assume that Ty = +oco0 and
Condition 3.1 holds with ¢ = +1. Assume also that there exist func-
tions ®;, j = 1,2, ..., 5, satisfying Condition 3.8. If x(t;p), t € [0,T) is
a mazimally defined solution of the problem (1.5)-(1.6), then it holds

T = +oo, (4.9)
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as well as
gg[iﬁ(i;p) ~ Y(t;p)w(v(t;p);p)]‘
< Y(t;p)’}/(p) (EP(p)v(t;p) _ 1) { (Dl(i)b(t;p) 4 la(;:p)' + b(t;p)],
(4.11)

for allt > 0 and p large enough. Here we have set
w(v;p) : = zo(p)cos(v)

b(lo;p) (i:ﬂ(}"?) + (z;((%:i)) 4 a(02; P))mo(p)) sin(v),

and P(p) is the quantity defined in (3.15).

Proof. Inequality (4.10) is easily implied from (4.8) and the relation

z(t;p) = Y (& p)y(v(t; p); p).

Then property (4.9) follows from (4.10) and the fact that the solution
is noncontinuable ( see, e.g., [16], p. 90).
To show (4.11) observe that

‘dt [Elt;n) — Y(t;p)w(v(t;p);p)])
d

Y 6P [y(v(E p);p) — w(v(t; p); p)]

and therefore

‘dt [2(t;p) — Y(t;p)w(v(t;p);p)}{

< |lu(o()5) — w(olt; i) Y (5:7)

- ’Y(t;p)%[y(v(t;p);p) - w(v(t;p);p)]‘l

< [R((: )P ¥ ()| + [Y (62) e R0t 2); ) (i)

< ¥ (t;)7(p) (7P — 1) | @1(4)5( Bl la(gp)l +Vb(Em)|.
We have used relations (3.8), (3.14) and (4.7). O

Now we present the main results concerning the existence of approx-
imate solutions of the initial value problem (1.5) - (1.6).
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The function defined by
#(t;p) : = Y (t; p)w(v(t;p)i p)

=Y (; p)[yo(p) cos [Ot v/ b(s; p)ds + Jo(p) sin /Ot v b(s;p)ds]
- (M)% exp ( — % /Ot a(s;p)ds) {xo(p) cos(v(t;p))

b(t; p)
- g 0+ (o + <))

(4.12)
is the so called approzimate solution of the problem, since, as we shall
see in the sequel, this function approaches the exact solution as the
parameter tends to +co. Moreover, since this function approaches the
solution z in the C! sense, namely in a sense given in the next theorem,
we shall refer to it as a C approzimate solution.

To make the notation short consider the error function

E(t;p) = z(t;p) — Z(t;p)- (4.13)
Then, from (4.10) and (4.11), we get
|£(t;p)| < M(t;p) (4.14)
and
2 £(t:0)| < Y (69 (0) (7O 1) |
; , (4.15
y [\/i’l(zz)b(t,p) " la(tQ,p)| . b(t;p)],
respectively.

Theorem 4.2. Consider the initial value problem (1.5) - (1.6), where
the conditions of Theorem 4.1 keep in force and the relation

I}lii{l Gu(®@;)> 0 (4.16)

is satisfied. Moreover, we assume that
zo, 71 € Ag, (4.17)
a(:;p) =0, for all large p, (4.18)

as well as
a(t;-), b(t;) € Ag, t € Co(RY). (4.19)
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If E(t; p) is the error function defined in (4.13) and the relation
5 3
min (%) + [igg(b(t; ) + min{Gx(Zo),
1
Gr(w0) + 595(b(t; ), (4.20)

Gi(wo) + Ga(alti )} | = No >0, ¢ € Cu(R),

is satisfied, then we have

E(t;p) 20, p— 400, t € Cy(RT) (4.21)
and the growth index of the error function satisfies
Go(E(t ) > No, t€ Co(R). (4.22)

In addition to the assumptions above for the functions xg,Zg,a,b
assume the condition

I}lii]{lgb“@j) + EQE(b(t; Y + min{Gg(Zo) + Ge(alt; ),

%QE(b(t; )+ Gr(Zo), Gr(xo) + QE(b(t; ‘):

: (4.23)
Gr(zo) + 2Ge(alt; ), ‘é‘gE(b(tQ ‘) + Ge(zo)
+ Grla(t; -)}] =N, >0, t € Co(RY),
instead of (4.20). Then we have
%S(t;p) ~0, p— +oo, t € Co(R"), (4'24)

and the growth index at infinity of the error function is such that
d
gE(%S(t; )) > Ny, t e C,(RY). (4.25)

Proof. Due to our assumptions given £ > 0 small enough, we can find
real numbers o, 7, and u, v, close to the quantities —Gg(zg), —Gr(Zo),
—Ggr(a(t;+)) and —Gg(b(t;-)) respectively, such that, as p — 400,
zo(p) = O(E(p))?), Zo(p) = O((E(p))"), (4.26)

a(t;p) = O((E(p))”), as p— +oo, t € C,(R™)
and

b(t;p) = O((E(p))*), as p — +o0, t € C,(RT), (4.28)
as well as the relation

S

5
min G (®;) - [T +meax{r,0+ 5,0+ v} = No—e> 0. (4.29)
J:
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for
Assume that (4.18) holds. We start with the proof of (4.21). Fix
any t > 0 and take any N € (0, Ny — €). Then, due to (4.16), we can
let ¢ > 0 such that
¢ 3p L
mlglngE(@j) >(>N+ [I + max{T, o + il - u}]
:,':

Therefore we have

3
max{?)z'u—l—'r %L-I—U f-{-a+u}—(<—N, (4.30)

and, due to Lemma 2.2, it holds
Ge(P) > ¢, Gs(®1) > ¢ (4.31)

The latter implies that there exist K > 0 and py > 1 such that
0 < P(p) < K(BG) ™, )
0 < ®1(p) < K(E(p)~,

for all p > pg.
From relations (4.27), (4.28) and (4.26) it follows that there are
positive real numbers Kj, j = 1,2, 3,4 such that

|b(t; p) < K1(E(p))*, (4.33)
1Zo(p)| < Ka(E(p)),

120(p)] < Ka(B(p))°, 24
0 <a(t;p) < Ko(E(p)), (4.35)

for all ¢t > 0 and p > p;, where p; > po.
Also keep in mind that from Condition 3.1 we have

b(t;p) = 0, (4.36)

In the sequel, for simplicity, we shall denote by ¢ the quan-
tity E(p).

Consider the function M(t; p) defined in (4.10). Then, due to (4.32),
(3.14) and (4.33)-(4.36), for all ¢ € [0,f] and p with ¢ = E(p) > p1, we
have

1 1 -
M(t;p) < Kf@’%q% [Ksz +672 (quT + K3q” [ (KIK)% =5

% K4q )](Z S KK 3 g i)

(4.37)
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Since the series

+0o0

1 n
n . —ng Bt
1+Z(n+1)|(tK) q (Kl)2q

n=1

converges uniformly for ¢ in compact sets, it admits an upper bound
K5(t) > 0, say, on [0, f]. Therefore, for all ¢ € [0,] and ¢ = E(p) > py,
it holds

o 1 = n g o~ o 1 op
Z}EKRQ "t (K1)Zqr < Ks(()iKq ¢ (Kq)2 g3,

n=1

So, from (4.30) and (4.37) we get
M) < Kf074g% x [(1+ 67D Fog

1 ]. 1 = i ].
+ K397§QJZ(K1K)§Q_§2+_ + ng_%QU‘Q‘KcLQ‘U]

x Ks(B)iKq$(K)bqh (4.38)

= Kgqlitm—¢+% +K7q§+a+i2iﬁ—c+f§ + Kggitotv—¢+4
< Keg ™V + Krg™V"8 + Kyg ™ < Koq™",
for some positive constants K;,j = 6,7,8,9. Recall that
g=E(p) 2p1 2po > 1

This and (4.14) complete the proof of (4.21).
Now, from the previous arguments it follows that given any A &€
(0, N) it holds

M(t;p)qA < Kog VM 50, as P — 400,

where the constant K is uniformly chosen for ¢ in the compact interval
[0,%]. Then from (4.14) we get
E(t;p)g* — 0, as p — +oo,

which implies that the growth index at infinity of the error function
satisfies

Ge(E(t;p) = A
From here we get
Gr(€(t;p)) = N.

Since N is arbitrary in the interval (0, Ny—e) and € is any small positive
number, we obtain (4.22).
We proceed to the proof of (4.24).
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Again, from our assumptions and (4.23), for any small enough € > 0,
we can choose real numbers o, 7, and p, v, as above, satisfying (4.33),
(4.34), (4.35), as well as

5 3
mll{lgg(@j) - [E —|—II18X{T + v,
j:
%+T,o+u,a+2v,%+o‘+u}]
=. Nl —e>0.

(4.39)
Take any N € (0,N; —€). Then, because of (4.39), we can choose
¢ > 0 such that

5 3
mi{lgE(@j) >( >N+ [I,u +max{7‘+u,%+r,cr+ﬂ,a+2u,
‘?=

g +a+ l’/’}] ;
From this relation it follows that
. 3
r;l_l{lQE(CDj) >N + [TM + maX{% + 104+ ,u,% + o+ u}]
3
=(B E) + [_,u + max{7, 0 + E,O"Jr?/}]
2 4 2
and
2 3p 2
min Gr(®;) >N + {E + max{7T + v, 0 + 2v, = +o0+ U}}

3
=(N+v)+ [wf—i—max{'r,a—l—u,a-l—%}].

These inequalities with a double use of (4.38), with N being replaced
with

N+ g and N+ v
respectively imply that

M(t;p) < Kog™™% and M(t;p) < Kog V7.
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Then, from (4.15), (4.32) and conditions (4.33), (4.35) it follows that
there are constants K;g, K11, K12 such that

%E(t;p)l SM(t;p)[ (I)l(i)b(t;p) + la’(gp)l + b(t;p)}

< M(&0)[Kia $¢% + Kng” + Kiagt]

< KoKoq Vg 3% + Ky Kog ™V p" (4.40)
+ KipKoqg N 5¢%

= Ki0Koq V% + K Kog™V + K1 Koq™

< (Ko + K + Ki2)g™v.

Since N is arbitrary, this relation completes the proof of (4.24).
- Relation (4.25) follows from (4.40), exactly in the same way as (4.22)
follows from (4.38). O

Theorem 4.3. Consider the initial value problem (1.5) - (1.6), where
the conditions of Theorem 4.1 and conditions (4.17), (4.18), (4.19)
keep in force. Moreover assume that there is a measurable function
w: [0, 4+00) — [0, +00) such that

la(t; p)| < w(t)log(E(p)), t=0 (4.41)

for p large enough. If E(t;p) is the error function defined in (4.13) and
the relation

T}lil{l A(®;) + EQEUJ@; ) + min{Gg(Zo), Gr(zo)
1 4.42
+ 508(6(5)), G z0)}] i
= Mg >0,
holds, then we have
E(t;p) =0, p— +oo, t€ Co([0,T(My))), (4.43)
where, for any M > 0 we have set
¢
T(M) i=eaup{t > 0:0() = / w(s)ds < 2M}. (4.44)
0

In this case the growth index of the error function satisfies

Ge(E(t;-)) = My, t e Co([0,T(My))). (4.45)
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Also, if (4.41) keeps in force and the condition
min A(2;) + [3G5(b(t ) + min{Ga(a0), 50 (b(t: )
+ o8, Goloo) + a0t ), Oalao),  (446)
LG5(3(13) + Gs(@n)} ] = M > 0

is satisfied, then we have
d

de(6p)~0, p— +oo, tECO(O.T(MY)  (447)

and the growth indez of the error function is such that
d
QE(EE(LL; ) > My, t € Co([0, T(M))). (4.48)

Proof. Let £ € (0,T(M,)) be fixed. Then from (4.42) we can choose,
numbers p, o, T satisfying (4.33) and (4.34) and such that —u, —o, —7
are close to Gg(b(t;+)), Ge(zo) andGg(Zo), respectively and moreover

S0 7 1 5
[I +max{r, o + 5,0}} + EQ@ < I“jﬂ:l{lgE(‘I’j)-

Take ¢, v, N (strictly) positive such that

3 [,
[I,u + max{r, 0 + %, o+ u}] + iﬂ(t) + N
; (4.49)
e
Let pg > 1 be chosen so that log(p) < p” and (4.41) holds, for all
p > po. Then, due to (4.41), we have
|a(0;p)| < w(0)¢”, (4.50)

for all p > po. Recall that g := E(p).
Now we proceed as in Theorem 4.2, where, due to (4.41) and (4.50),

relation (4.38) becomes

M(t;p) < K765k et®00s@

1 (e

) L1
% [(1 +673)Kaq” + Ko g1 (K1K)3q ™3

4 Kﬁ‘%”%w(())log(q)] X Ks(ﬂqu‘C(Kl)%q’% (4.51)

< Kﬁq%+r—c+-;—°+%9(f)

bpo+=GH—c+ 24200 &4+otv—(+4+30()
+ Kqq + Ksq : .
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Notice that (4.51) holds for all g := E(p) with p > pg > 1. From this
inequality and (4.49) we obtain the estimate

M(t;p) < (Ko + K7+ Ks)g ™", (4.52)

which implies the approximation (4.43). Inequality (4.45) follows as
the corresponding one in Theorem 4.2. Finally, as in Theorem 4.2, we
can use the above procedure and (4.52) in order to get a relation similar
to (4.40), from which (4.47) and (4.48) follow. O

5. APPLICATION TO THE INITIAL VALUE PROBLEM (1.3)-(1.4)

Consider the initial value problem (1.3)-(1.4), where assume the fol-
lowing conditions:

(i) The function b; € C*([0, +o0), [0, +00)) it is bounded and it has
bounded derivatives.

(ii) The functions ag,as € C([0,+00), [0, +00)) are bounded with
bounded derivatives.

(iii) The function by is a nonzero positive constant and, as we said
previously, the exponents p, v, m, o, 7 of the model are real numbers.

Observe that Condition 3.3 is satisfied by choosing the following
functions:

®l(p) = llp_sua (I)Q(p) = l2pﬁ2'u’, @3(}9) = l3p2y_M7

Dy(p) = lap”™*, D5(p) = lsp™*,
for some positive constants l;, j = 1,2,---,5. It is not hard to show
that the growth index of these functions with respect to the function
E(p) := p, are

gE(®l) = 3.“’7 gE(CI)2) = 21“‘) gE((I)3) =—2v+ Hy

Ge(®4) = —v+pu, Gg(Ps5)=—-m+p.
In this case the results (4.21) - (4.22) and (4.24) - (4.25) keep in force
with Ny and N; being defined as

)
/ol QU,E—m}—max{T,%+a,a+u}

N0Z=IIII1H{4,Z— )

and

. Wb
N, = mm{f, %—21/, %—m}—max{T-lnu, p+o, g_H_’ o+2v, %—f—d—!—l)},
respectively, provided that they are positive.
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To give a specific application let us assume that the functions as, as, b1
are constants. Then we can obtain the approximate solution of the ini-
tial value problem (1.3)-(1.4) by finding the error function.

Indeed, via (4.12), we can see that a Cl-approximate solution of
problem (1.3)-(1.4) is the function defined by

1
i@ap):=epr*§tUhr+cmp”ﬂ
x [(51 + 8,9°) cos[t(by + bap™)] + (by + bop*) 2

1 12
X (771 +mp" + 5(51 + 0207 ) (a1 + agp ))
xamﬂm+bw%ﬂ,tzu
This approximation is uniform for ¢ in compact intervals of the positive
real axis. For instance, for the values

a1 =2, as=08=0, h=b=by=m=m=1

9 1 9 (5.1)
TR mZ T__—Q—O—’J#_l’

we can find that the growth index at infinity of the error function
E(t;+)) satisfies

!l,:

19 d 1
s —El )= —.
Go(E(t;)) = 70 and (€6 2 35
In Figure 1 the approximate solution for the values p=>50, p = 150 and
p=250 are shown.

6. APPROXIMATE SOLUTIONS OF THE INITIAL VALUE PROBLEM
(1.5)-(1.6) IN CASE ¢ = —1

In this section we shall discuss the IVP (1.5)-(1.6) when ¢ = —1,
thus we assume that b(¢;p) < 0, for all ¢ and large p. We shall as-
sume throughout of this section that Condition 3.3 (given in the end
of Section 3) is satisfied.

Here the function y defined in (3.1) takes initial values yo(p) and
fo(p) as in (4.1) and (4.2). We wish to proceed as in Section 4 and
consider a fixed point £ > 0, as well as the solution

w(v;p) = c1(p)e” + ca(p)e™, v € [0,7]

of equation |
w’ —w =0, (6.1)
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F1GURE 1. Approximate solutions of the problem (1.3)-

(1.4), with the values (5.1) and when p = 50, p = 150
and p =250, respectively
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associated with the same initial values as y. We have set ¥ := 'U(f; p).
Thus, for j = 1,2 we obtain

1 (=1 7. v'(0;p) |, a(0;p)
ci(p) = 5 [:Ea(P) - —_m(ﬁo(i'?) + zo(p) [4b(0;p) + 5 1)]
and therefore it holds
1 1 _
lej(p)] < 5 [l%(?” + m‘%(?) )
+q ( )[b,({);p) i G(O;p)] H —_ h",( ) '
WP Lp0p) T 2 i

Also, the difference function R defined in (4.4) satisfies (4.6) where,
now, we have

K(v,s) = sinh(v — s).
Observe that

/Ov sinh(v — s)|w(s;p)|ds < lclép I/ — e ")e’ds
e

|CQ P
2

o —"u+s e %ds

|C1;p ve’ — sinh(v))

+ lf%gﬂ(sinh(’u) —ve™)
< k(p)v sinh(v)
and therefore, for any v € [0, 7], it holds

|R(v;p)| < P(o)s(p)vsinh(v) + P(o) f " sinh(v — 5)|R(5; p)|ds

< P(p)s(p)vsinh(v) + P(p) sinh(v) fov |R(s;p)|ds.

Here we apply the method of proving Gronwall’s inequality, but we
follow a different procedure. Indeed, we set

= / |R(s;p)|ds.
0
Then

F'(v) = |R(v;p)| < P(p)x(p)vsinh(v) + P(p) sinh(v) F(v)
and therefore
F'(v) — P(p) sinh(v) F(v) < P(p)x(p)vsinh(v).
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Multiply both sides with the factor exp (— P(p) COSh(’U)) and integrate

from 0to v. Then we obtain

F(v)e PP eoshlv) < P(p)m(p)f ssinh(s)e™F®)coshie) g
0

= Kl(p)(-—zve*P(P) cosh(v) | /'” o~ P(p)cosh(s) 7o

0
< .’i(p)?](]. _ e—P(’p)cosh('u)).

Therefore we have
|R(v; p)| < P(p)r(p)vsinh(v)
+ P(p)k(v)vsinh(v)(ef®)cosh®) _ 1)
— P(p)x(p)vsinh(v)el® cosh®),

Next we observe that

/v cosh(v — s)|w(s;p)|ds < |1 (p)

2
|ea(p)]
2

(ve” + sinh(v))

+ sinh(v) + ve™)
< k(p) (v cosh(v) + sinh(v))
and therefore, for any v € [0, 9], it holds

|E'(vip)| < P(p)s(p)(v cosh(v) + sinh(v))

+ P(p) /Dv cosh(v — s)|R(s;p)|ds
< P(p)x(p)(v cosh(v)

+ sinh(v)) + P(p) cosh(v) / \Bls:p)|ds.
0
Using this inequality and (6.3) we obtain
|/ (v;p)| < P(p)x(p)(vcosh(v) + sinh(v))
+ P(p)&(p)ef Py cosh(v)(eF P)cosh(®)=1) _ 1),

(6.3)

(6.4)

The proof of the next theorem follows as the proof of Theorem 4.1,
by using (6.3), (6.4) and the expression of the functions v and Y from

(3.4) and (3.7) respectively. So we omit it.

Theorem 6.1. Consider the ordinary differential equation(1.5) asso-
ciated with the initial values (1.6), where assume that the Condition
3.1 holds with ¢ = -1. Assume also that there exist functions ®;,
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i =1,2,..5, satisfying (3.11), (3.12), (3.13). Ifz(t;p), ¢t € [0,7)

is a mazimally defined solution of the problem (1.5)-(1.6), then it holds
T =400,

and if we set
2

w(v;p) : = % Z = (-1 [wo(p)
(=1} £ ¥(0;p) | a(0;p)

and
E(t;p) == z(t;p) = Y (t;p)w(v(t;p);p),
then we have

6t < P (o) exp (-5 [ alsinls)
X /Ot \/ —b(s; p)ds sinh {/Ot \/———b(s_;p_)ds] (6.5)
x exp (P(p) cosh(fﬂt V/=b(s;p)ds)) =

as well as

‘j«; ‘ “,p)[ (pilb(t p)l+| (tzp)l]

exp (—= /Ot (s;p)ds)/—b(t;p)
X P(p)ﬁ,(p)[(/ot —b(s;p)ds) COSh(/o v/—b(s; p)ds)
—|—sinh(/: v/ —b(s;p)ds)

¢ ¢
PP)/ \/—b(s;p)dscosh(f v/ —b(s;p)ds)
0 0
% (ef’(p)(cosh(f(;t \/—b(sip)ds)—1 1)]’
for allt € I and p. Here P is defined in (3.15) and & in (6.2).

(6.6)

Now we give the main results of this section.

Theorem 6.2. Consider the initial value problem (1.5) - (1.6), where
the conditions of Theorem 6.1 keep in force. Moreover assume that
a(-;p) > 0, for all large p, as well as the following properties:
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i) It holds sup,sq b(t;p) < 0, uniformly for all t in compact sets and
all large p.

it) It holds A\(®;) > 0, forall j =1,2,...,5.

i11) It holds zo,z1 € Ap.

Define the function

Z(t;p): = (%)% exp (—% /Dta(S;p)dS)

) b'(0;p)  a(0;p)
~ 7 ) + 2o gy + )]

Let x be a solution of the problem and we let £(t;p) be the error function
defined by
E(tp) == z(t;p) — Z(t p)-
a) If a(t;-) € Ag, t € Co(RY) holds and there is a measurable func-
tion z(t), t > 0 such that

b(t; )| < 2(t) [log(log(E(p)))]", (68)
for allt > 0 and p large enough, then we have
E(tip) 20, p— 400, t € Co(RY), (6.9)

provided that the quantities above satisfy the relation

5
I;’lzlllfi Gp(®;) + min{Ge(Zo), Ge(o), Ge(zo)
+Ge(a(t;-))} =: Lo > 0, t € Co(R™).
The growth index of the error function satisfies
Ge(E(t;+)) = Lo, t € Co(RY). (6.11)

b) Assume that (6.8) holds and z(t),t > 0 is a constant, z(t) = n,
say. If the condition

(6.10)

Iﬁl?gE(@j) — 1+ min{Gp(Zo), Gr(zo), Gr(zo)

+Ga(at;-), Gulalt;")) + Ga(Zo), (6.12)
Ge(zo) +2Gs(alt; ')} =: L1 > 0, t € Co(RT)

holds, then we have

d
Eé(t;p) ~0, p— +oo, t € Co(R"), (6.13)
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and

d

gE(Eg(t; ) = Ly, te Co(RY). (6.14)

Proof. We start with the proof of (6.9). Due to (6.10), given any small
e >0and N € (0,Ly — €) we take reals ( > 0 and 7,0, v near to

—Gr(%0), —Gr(20), —Gr(a(t;-)) respectively, such that

5
_i{lQ’E(q)j) > (> N +max{r, 0,0+ v}

J

Hence (4.34) and (4.35) keep in force. These arguments and Lemma, 2.2
imply that (4.32) hold, for some K > 0 and q := E(p) withp > po > 1.
Notice, also, that

max{r, o, o +v}—(<—N. (6.15)
Because of (6.15) we can obtain some 6 > 0 and p; > po such that

50 K
S+ 5a tmax{r, o+6 o +v}-(<-N, p2p. (6.16)

Keep in mind assumption (i) of the theorem, relations (4.34) and (4.35),
for some positive constants K, K3, K4 and, moreover,

b(t;p) < -0, (6.17)

for all t and p large. Fix any ¢ > 0 and define

t
A= / \ z(s)ds.
0
Obviously there is a py > p; such that for all ¢ > py, we have
Kqg*<1, g=p (6.18)
and
log(log(u)) < log(u) < ul, u > p,. (6.19)

Consider the function L£(¢;p) defined in (6.5). Then due to (4.32),
(3.14), (4.33), (4.34), (6.17), (6.8) and (6.19), for all ¢t € [0,f] and
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q > pa, we have

[N

L(t;p) < P(p)x(p) (#6?))%93 [1082(10%((1))]

x exp [P(p) coshlog(log(q))]]

< GoP)) (20) ¥

sinh[Gg log(log(q))]

Therefore it follows that

L) < My SrorTHRgT 4 Ao gttt

6.20
s A3q~§+au%+5+3—;+5+§9‘€ £ A4q7€+0+1’+§§+5+%‘1"§ ( )

bl

for some constants A;, 7 = 1,2,3,4. From (6.16) and (6.20) we obtain
L(t;p) < Aog™, t €0, (6.21)

for some Ag > 0. This and (6.5) complete the proof of (6.9).
Now, from the previous arguments it follows that given any L €
(0, N) it holds

L(t;p)g" < MgV =0, as p — +oo,

where, notice that, the constant Ag is uniformly chosen for ¢ in the
interval [0,%] and p with E(p) > p,. This gives

E(t;p)g” — 0, as p — 400, t € Co(RH).

Hence the growth index of the error function & satisfies Gg(E(¢;p)) > L
and so we get

Ge(E(t;p)) > N as p — +oo.

Since N is arbitrary in the interval (0, Ny — €) and ¢ is small, we get
(6.11).

(b) Fix any ¢ > 0 and take any small ¢ > 0 and N € (0, L, —¢). Also
from (6.12) we can get ¢ > 0, § > 0 and reals o,v, T as above, such
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that

max{% 41

+max{d+o+v, d+T,v+T, 20+0, 2+ o},

25+f\/ﬁ(5+1+max{fr,5—|—cr,a+v}} + N (5:29)
5
j:

Such a § may be chosen in such way that

tymé < 1.
By using inequality (6.6) and relation (3.8) we get

ié’(t;p){ < E(tip)

dt
; (%)%em( -3/ * a(5)ds) /FE )
<[ [ Vs cosn( [ /0
+ sinh( fo t /—b(s;p)ds)
P fo Y e LIRS, / W e

X (ea:p(P(p)(cosh(]ot v/ —b(s;p)ds) — 1)) — 1)},

@1(p)lb(t;p)| |, lalt;p)|
[ 4 " zp]

namely

|i5(t3p)| < L(t;p) [%Kép%\/ﬁl()g(log(q)) 4 K;Q”]

dt
+ (%)Z(log(log(Q)))%Kq‘C

1 1
| Kad® _( T
X 2[ 3q + \/ﬁ Kgq
K4py]

Logi o
+ Kag? | ;K347 /log(log(@) + =5
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x [£v/i(10g(10g(a))) cosh(E/log log(a)
-+ sinh(£,/71og(log(q)))
+ &"471/ilog(log(q)) cosh(fy/T log(log (1))
X (exp (Kq"g(cosh(f\/ﬁ log(log(q))) — 1)) - 1)] A2
Letting any p with ¢ := E(p) > po > e, and pp being such that
q > po == log(q) < ¢’
and using the fact that

e’,

[N R

z > 0 = cosh(z) < €® and sinh(z) <
from the previous estimate, we get
[ £t < [Aageror oot o pgterriieorte
t } =

4 AggCtos+o+ Yo+ 5a +A4g~g+a+y+%‘i+6+{§q“<:|

I Kig” :
x |3K30F i + =L ] + (1) b kg

2 9
1 1 1,1 = K4q¥
| Ksg® —(K LK ”[—K § uﬂ]
Xz{st]-i-x/ﬁ 9q + 3Q4ZQZ\/7_TQ+ 9
. . 1 . o .
x [E/ig DT + ghT 4 KTE, gl

o : g
x ((exp (Kq~((10g(@))™) ) | Agt.
Therefore it follows that

20
%S(t;p)l < JZ; Tjq", (6.23)
for some positive constants I';, 7 =1,2,---,20 and
Ty :=Cﬁg-+a+7—25+1, rz:=—C+0+5§6+1+%
T35=—C—g+7"+7—25+1, r4:=—C+T+52—5+1+Va
?"5:2—2C-|—J+%5-+1, r6=r7:=~C—%+U+Z§~+1+V,
TS;:_C+J+§+1+21/, Tg:=25—C+U+‘E\/55,

rio:=0—C+o+iyns, rT11:=20—(+0o+i/m+1,



APPROXIMATE SOLUTIONS 85
719 1= 25—(;+T+f\/ﬁ5, T13 ::6—C+T+f\/ﬁ5,
T14 \— 25—C+T+£\/ﬁ5+1} 5 = 3(5—C* C +U+£\/ﬁ(5,

2
T16:=26—C+J—%+f\/ﬁé, r17::35~C+a—%+f\/ﬁ5+1,

rg =20 — C+ o+ v+iymd, 719 = § — (4 0+ v+ E/74,

Tog 1= 25—C+O’+I/+f\/’ﬁ(5+1
Due to (6.22) all the previous constants are smaller than —N. Then,
for the quantity Ty := max; [';, inequality (6.23) gives

d _
| €Ep)| < Tog N q>po, (6.24)

which leads to (6.9), since the constant IV is arbitrary.
The proof of the claim (6.11) follows from (6.24) in the same way as
(4.22) follows from (4.38).
O

Theorem 6.3. Consider the initial value problem (1.5) - (1.6), where
the conditions of Theorem 6.1 and (i), (i), (i) of Theorem 6.2 keep
in force. Assume, also, that (4.41) and (6.8) hold.
a) If relation (6.12) is true, then
E(t;p) ~ 0, p— +o0, t € Co([0,T(Lg))).
Moreover the growth indez at infinity of the error function satisfies
Ge(E(t;-)) = Lo, t € Co([0,T(Lo)))-
b) If (6.12) keeps in force, then
d

ZE(6p) =0, p— +oo, t€ Co((0, T(Ln))

and

Gu(5E(t57)) 2 Ln, ¢ € Co(0,T(Ly)))

Proof. First of all we can see that for a fixed £ € (0,T(Lg)), due to
(4.41) and (4.44) we can find reals T, o, v near to —Gg(Z0), —Ge(z0), —Gelalt;-)),
respectively, such that

i :
exp ( - 5/ a(s;p)dS) < pi%,
0
Taking into account this fact and relation (6.10), we can see that

1 N 5
max{7,0,0 + v} + §Q(t) & mi¥ Or(2;).
J:
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Now, we proceed as in the proof of Theorem 6.2, where it is enough to
observe that the right hand side of relation (6.20) is multiplied by the
factor

exp(—%j; a(s; p)ds).

A similar procedure is followed for the proof of part (b) of the theorem.
O

7. A SPECIFIC CASE OF THE INITIAL VALUE PROBLEM (1.3)-(1.4)

We shall apply the results of theorem 6.2 to a specific case of the
problem (1.3) - (1.4), namely to the problem

2" + 2ap”z’ — a*p*™z + pmz sin(z) = 0, (7.1)
associated with the initial conditions
z(0;p) = ap”, '(0;p) =ap, (7.2)
where, for simplicity, we have set
1 1 1 2
a:=m, =2, w= 9’ T=O’I="2—, mgé-.

Using these quantities we can see that all assumptions of Theorem 6.2
hold, with E(p) = p,

19 T
Lo=—, L1 =-.
0 6 ) 1 6
Then an approximate solution of the problem is given by
1 £ .4 2t 1 24
B 1) = l—Oe“ﬁpgp% cosh(%) + (10p*% +p1_é) sinh(%), 12>

In Figure 2 the approximate solution for the values p=1, 3.45, 5.90,
8.38, 10.80, 13.25, 15.70, 18.15 is shown.

8. APPROXIMATE SOLUTIONS OF THE BOUNDARY VALUE
PrROBLEM (1.9)-(1.10)

In this section we consider Eq. (1.9) associated with the boundary
conditions (1.10). Our purpose is to use the results of section 3 in order
to approximate the solutions of the boundary value problem, when the
parameter p approaches the critical value +oco.
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i

i

P

1 ‘i |

:

13

FIGURE 2. Approximate solutions of (7.1) - (7.2), when
p=1, 3.45, 5.90, 8.38, 10.80, 13.25, 15.70, 18.15 respec-

tively

To begin with define 7 := v(1; p) and from now on the letter J, will
denote the interval [0,7]. Also, in order to unify our results, we make

the following convention:
We shall denote by

_)sin(v), if c=+1
Selv) = {sinh(v}, if c=-1,

Culw) = cos(v), z:f e=-+1
cos(v), if e=—1.
Our basic hypothesis which will be assumed in all the sequel without

any mention is the following:
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Condition 8.1. In case ¢ = +1 let
1

7 1= 9(1;p) :f Vb(s;p)ds <, (8.1)
Q

for all p large enough.

Suppose that the problem (1.9)-(1.10) admits a solution z(¢;p), ¢t €
[0,1]. Then, Theorem 3.2 implies, and inversely, that if y(;p) is a
solution of equation (3.10) having boundary conditions

y(0;p) = zo(p) = vo(p)

y(rip) = y(wip)ip) = 35 (8.2)

_ b(1;p)\1 1 S a(sip)ds _
=00 (55.5))
Before we seek for approximate solutions of the problem (1.9)-(1.10)

we shall give conditions for the existence of solutions. To do that we
need the following classical fixed point theorem:

Theorem 8.2. (Nonlinear alternative) [6]. Let D be a convex subset
of a Banach space X, let U be an open subset of D, and let A: U — D
be a completely continuous mapping. If ¢ € U is a fized element, then
either A has a fized point in U, or there is a point u € U and X € (0, 1),
such that w = AAu+ (1 — A)g.

To proceed we shall formulate the integral form of the problem and
then we shall apply Theorem 8.2. To this end we let w be the solution
of the homogeneous equation

w" +cw =0,

with boundary conditions w(0;p) = yo(p) and w(7;p) = y.(p). This
means that w is defined as
1
w(v;p) = m (yg(p)(sc('r e g yT(P)SC(U))- (8-3)
(Notice that because of (8.1) in case ¢ = +1 the factor S.(7) is positive
for all 7.) Hence we see that
lw(v;p)| < ge(lyol + [y7),

where

c=+1

sinh(r _
sinh(+/0)’ ¢c=+L

1
Qe = {m;n{ssn(\/a),sin(ry}=



APPROXIMATE SOLUTIONS 89

Next we let R(v;p), v € J be the solution of equation

R'(v;p) + cR(v;p) = H(v;p), v € Jp (8.4)
satisfying the boundary conditions
R(0;p) = R(7;p) = 0. (8.5)

where
H(v;p) : = C(t, y(v;p); )y (v; p)
= C(t,y(v; p); p)R(v; p) + C(t, y(v; p); p)w(v; p).
The latter, due to (3.15), implies that

|H (v;p)| < P(p)|R(v;p)| + P(0)ac(lyo(p)] + ly-(p)])- (8.6)

To formulate an integral form of the problem we follow an elementary
method and obtain

R(v;p) = d1C.(v) + daSc(v) + /v S.(v—s)H(s;p)ds, veJ, (8.7)

for some constants di, ds to be determined from the boundary values
(8.5). Thus we have
0= R(0;p) = dy

and
0= Rlrsn) = GiEs() + BB+ / " Su(r — s)H(s;p)ds.

This implies that

1

dy = —mfo S.(T — s)H(s;p)ds

and so we have
Hfug) = f G(v, 5;p)H(s; p)ds, (8.8)
0

where the one-parameter Green’s function G is defined by
S“(”S)ifg ) 8- xp(s)  (89)
Here the symbol x4 denotes the characteristic function of the set A.
From (8.9) we can see that
_ Se(8)8e(t—v)
G(U: 3;p) = {_Sc(vig‘(c?r—s),
Se(T) )
From 3.1 and (8.1) it follows that for all s,v € [0, 7] it holds

5}
max{|G(v, s;p)l, |5-G(v,5;9)[} < Qe (8.10)

Glu, s;p) =

DD ET
0<v<s<T
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where
+1

(sinh(7))? _
sinh(+v/8) ’ c=-L

Now we see that the operator form of the boundary value problem
(3.10)-(8.2) is the following:

y@mﬂ=w®ﬂﬂ+/]G@ﬁ@%ﬂﬂﬂ@ﬂ@Wﬁ@M&m%,UE%»
0

(8.11)

To show the existence of a solution of (8.11) we consider the space

C(Jp, R) of all continuous functions y : J, — R endowed with the sup-

norm || - ||-topology. This is a Banach space. Fix a p large enough and
define the operator A : C(Jp, R) — C(J,, R) by

(A2)(v) = w(v; ) /f?%&p B(50), 2(5); p)2(s)ds

which is completely continuous (due to Properties 3.1 and 3.3).
To proceed we assume for a moment that it holds

1= Plplrld, == Alp) = A 50, (8.12)
where (recall that) P(p) is defined in (3.15). Take any large p and let
T = v(1;p) =: v. Then, clearly,

lﬂp(p)TQc2A>0
Consider the open ball B(0,{) in the space C(J,, R), where
]
1—-P(p)r@

Here ||w|| is the sup-norm of w on J,.

Assume that the operator A does not have any fixed point in B(0,1).
Thus, due to Theorem 8.2 and by setting ¢ = 0, there exists a point 2
in the boundary of B(0,!) satisfying

z = Az,
for some A € (0,1). This means that for each v € J, it holds

Qc - {mm{sm(\f ),sin(r)}’ o=

L= £+ 1

V@NSHWW+LnG@JmmC@@m%4QWHdﬂH&
Then, from (8.10) we have

12(0)] < [lwll + QoP( f|z VIds.
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Thus, we get
|z(v)| < [lw]| + QP(p)7| 2, (8.13)
which leads to the contradiction
[|wl|
=z €« ——"— =1-1.
Il < TPt

Taking into account the relation between the solutions of the origi-
nal problem and the solution of the problem (1.9)-(1.10), as well the
previous arguments, we conclude the following result:

Theorem 8.3. If Properties 8.1, 8.8 and (8.12) are true, then the
boundary value problem (1.9)-(1.10) admits at least one solution.

Now, we give the main results of this section. First we define the
function

:E(t;p):=(z(—(;%)ﬂ)%exp(—%/; (spds mds
[ [ Vo)
+ z1(p) (gl—p))%e*f (emideg f \/b(s;p)ds) }

b(0; p)
_ 1 b(0;p)\ i
Sy b(S;p)dS){(b(t;ﬁ))

0

X exp ( — é/ota(s;p)ds)sc(/: oV b(SSP)ds)xo(P)
N (M)%e% i atmis g /D t ViE2)d)z: (0) )

b(t; )

which is going to be an approximate solution of the problem.

(8.14)

Theorem 8.4. Consider the boundary value problem (1.9) - (1.10),
where assume that Properties 3.1, 3.8, 8.1 , the conditions (1), (i) of
Theorem 4.2 and assumption (4.41) keep in force. Also, assume that
the boundary values have a behavior like

To, € Ap. (8.15)
a) If the condition
5 3
min Gr(®;) + ZQE(W; ) — @ + min{Gg(zo), Gr(z1)}
=:Ly>0

(8.16)
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is satisfied, then the existence of a solution x of the problem is guaran-
teed and if

E(t;p) = z(t;p) — Z(t;p) (8.17)
is the error function, where & is defined by (8.14), then we have
E(t;p) =0, p— +oo, t € Co([0,1]), (8.18)

where

1 1
b = —/ w(s)ds.
2 Jo

(Here w is given in assumption (4.41).)
Also, the growth index of the error function satisfies

Ge(E(t;)) = Lo, t € Co([0,1]). (8.19)
b) Assume that the condition

Ijnz{lgE(‘I)j) T %QE(b(t; ) — Q+ min{Gg(zo) + %Qg(b(t; )

Op(zo) + Ge(b(t;-)), G(21) + %gg(b(t; ). Gl (8.20)

Gr(z1)} = L1, te Co([0,1]) > 0,

holds. Then the existence of a solution x of the problem is quaranteed
and it satisfies

d
ES(LL; p) >0, p— +oo, t € Co([0,1]), (8.21)
and

Go(SE(t5)) = L, # € Co([0, 1) (522)

Proof. a) Take any N € (0, Ly) and, because of (8.16), we can choose
¢ > 0 and real numbers y, o, p near to —Gg(b(¢;-)), —Gr(zo), —Gr(z1),
respectively, such that

5
ji?A(@j) >(>2N+ % + 2 4+ max{o, o} (8.23)
Thus, we have
L+ Q+max{o,0} - < -N (8.24)
and, and due to Lemma 2.2,

P(p) < K(E(p))™%, (8.25)

for some K > 0. Thus (8.12) keeps in force for p large enough. This
makes Theorem 8.3 applicable and the existence of a solution is guar-
anteed.
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Let £(t; p) be the error function defined in (8.17). From (8.8), (8.10)
and (8.6) we have

|R(;p)| < 4.QPET ([0l + lyr]) + QeP( / |R(si p)lds,

and therefore
] QCQCP(p)T(lyol + lyTD
|R(U:P)| < 1 QCP(p)T (8.26)

1
< ZQ’chP(P)T”’UM + |y-]), v € Jp

Then observe that
E@t;p)| = |z(t;p) — Y (& p)w(v(t; p);p)|

= Y (t;p)|ly(v(t; p); p) — w(w(t;p);p)| = Y (& P)|IR(v(E p)s ),
because of (4.4). Thus, from (8.26) it follows that for all ¢ € [0,1] it
holds

|E(t; )| € ATHY (4 0)|2.Qc P ()7 (|30l + |y- )
_ Afl (b(o-}p))56_%f;a(s;p)dschcP(p)T(lyC]' + |y7|)

= A7 Qe [Ib(; )| P(p) (8.27)

«[Gaz)

+ (M) %e% I a(s;p)dslxl(p) |} ‘

b(t; p
From (8.25) and (8.27) for all large p (especially for all p with ¢ :=

E(p) > 1) it follows that
E(t;p)| < AT1Qer K™

Kfq * exp (log(q)% /Olw(s)ds) (Kgq" + que)

i
< Kug N (Kog” + Kag®).
Finally, from (8.24) we get
E(tp)| < KqV, (8.28)
for some K > 0, which, obviously, leads to (8.18). Relation (8.19)
follows from (8.28) as exactly relation (4.22) follows from (4.38).

b) Next consider the first order derivative of the error function £(t; p).
Due to (8.20), given any small € and N € (0, L1 —¢), we get reals { >

W[

~—

e 3 bme g (p)

N e

X
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0 and real u,v,0,0 > 0, near to —Gr(b(t;-)), —Gr(a(t;-)), —Ge(zo),
Gr(z1), respectively, such that

2 34 [
inGe(®;) >¢> N+ —+Q+max{oc+ +,0 + v,
=1 4 2 (8.29)

Q+%,Q+%M+Q,#+U}'

From (8.9) and (8.10) we observe that it holds

L Rp) = | [ GlspHsn

< QT (P()|R(v; )| + P(p)ac(|yol + |y-)
< ¢.Q7P®)AT'QemP(p) + 1)(lyo| + |y-l)-

From this relation it follows that

)

I%E(t;p)l = I%Y(t;p)R(v(t;p);p) + Y(t;p)&%R(’u(t;p);p)%v(t;pﬂ
< v (g pl{ (LH2ER) BB i ;) )

+ I%R(v(t;p);p)lvb(t;p)}

<ol ( qjl‘(i)b(t;p) + |a(t2;p)!)
x A q.Q.P(p)7(|yo] + |y-I)

+ Vbt )2 P(0)[A™Qer P(p) + 1(lyol + o)}
Therefore, for all large p (especially for p with ¢ := E(p) > 1) we obtain

d b(0: . .
|Eg(tap)i g QCQC'FP(p) [|$0(p)‘( (ij)) e_fg a(s;p)ds

1 b(t; p)
+an )| () ek o]
x{( (I’l(i)b(t;p)ﬂ“(tz;p)')al (8.30)

+/b(t; ) [AT' QT P(p) + 1]}
< q—C+Q+§f (Mlqcr+’,f, o M2qo+u
+ MagPTe + Myg”™ + Msq®™* + Msq®*),

for some positive constants My, My, M3, My, Ms, Mg not depending on
the parameter p. Taking into account the condition (8.29) we conclude
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that i
ZEED) < Mg,
for all large p. Now, the rest of the proof follows as previously. O

From inequalities (8.27) and (8.30) we can easily see that if the func-
tion a(-;p) is non-negative uniformly for all p and z:1(p) = 0, or a(;p)
is non-positive uniformly for all p and zo(p) = 0, then the conditions
of Theorem 8.4 can be weaken. Indeed, we have the following results,
whose the proofs follow the same lines as in Theorem 8.4:

Theorem 8.5. Consider the boundary value problem (1.9) - (1.10),
where assume that Properties 3.1, 8.8, 8.1 and the conditions (i), (i)
of Theorem 4.2 hold.

Also, assume that a(t;p) > 0 [respectively a(t;p) < 0,] for all t €
[0,1] and p large, as well as

1o € Ag and z1(p) =0, for all large p
[resp.
zo(p) =0, for all large p and z:1(p) € Ag].
a) If the condition
2 1
L Ge(®;) + ZgE(b(t; )+ Ge(zo) =: Lo > 0

[resp.
5 1
I;fl:lllfl gE(@j)ZgE(b(t; )+ Ge(z1) = Lo > 0]

is satisfied, then the existence of a solution x of the problem is guaran-
teed and if

E(t;p) = z(t;p) — Z(t;p)
is the error function, where & is defined by (8.14), then (8.18) holds.

Also, the growth index at infinity of the error function satisfies (8.19).
b) If the condition

1min \(;) + 705(b(t5)) + G (ao)
: (8.31)
- min{igg(b(t; V), Gela(t; )} =:L1 >0

[resp.
msin A®) + %gE(b(ti )) + Ge(z1)

+min{ZGp(b(t; ), On(alt; )} = La > 0
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holds, then the existence of a solution x of the problem is guaranteed
and it satisfies (8.21) and (8.22).

9. APPLICATIONS

1. Consider the equation

z" + sz(l) cos(t) log(p)z’ — [L + p" )z +p~'zsin(z) =0,  (9.1)
associated with boundary values
1 il 1
ey =—(1+=). 9.2
w(p) = 5P, 21(p) = g5(1+ ) (9.2)

Conditions (3.11), (3.12) and (3.13) are satisfied, if we get the functions

®;(p) = Ba(p) = Ps(p) = Palp) = kyp™ %
and
®s5(p) == kap~ 17,
for some ki,ke > 0. So case (a) of Theorem 8.4 is applicable with

E(p) := p. It is not hard to see that an approximate solution of the
problem is the function

sinh ((1 - t)\/m)
sinh (W
1 sinh (t\/rplo)

+e(p+§) Smh( 1+pm) ]

. _ sin()
E(t;p) =e”m [p

satisfying

= =

Ge(z(t ) — 2(5 ) =

The function for the values of p = 1,1.5,2,2.5 has a graph shown in
Figure 3.
2. Consider the equation
9 -
o+ —a + [% +p7 0z + “1;1(@ — 1, (9.3)

VP

associated with boundary values
20(p) = 0.2/, 21(p) =0, (9.4)
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FIGURE 3. Approximate solutions of (9.1) - (9.2), when
p=1, 1.5, 2, 2.5, respectively

We can take E(p) := p and
®1(p) = Ba(p) = B3(p) = Pu(p) = Ps(p) := kip™*°.

Then conditions (3.11), (3.12) and (3.13) are satisfied and so Theorem
8.4 is applicable with Ly = 3 and L; = 22.. In this case it is not hard to
see that an approximate solution of the problem is the function defined

on the interval [0, 1] by the type

1 1 .

The graph of this function for the values of p = 4,10, 20, 30 is shown

in Figure 4
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FIGURE 4. Approximate solutions of (9.3) - (9.4), when
p=4, 10, 20, 30 respectively

10. APPROXIMATE SOLUTIONS OF THE BOUNDARY VALUE
PrOBLEM (1.9)-(1.8)

In this section we shall discuss the approximate solutions of the prob-
lem (1.9) - (1.8). We shall use the results of section 3 to obtain ap-
proximate solutions when the parameter p tends to +o0o. Again, as in
section 8 we define 7 := v(1;p), Jp := [0,7] and use the symbols S,
and C,.

Our basic hypothesis which will be assumed in all the sequel without
any mention is that Properties 3.1 and 3.3 will keep in force for all
t€[0,1].

Assume that equation (1.9) admits a solution satisfying the condi-
tions

z(0;p) = 2o and z(1;p) = m(p)z(&; p),

for a certain point £ € [0,1) and a real number m(p). Then Theorem
3.2 implies that a function z(-;p) is a solution of the problem, if and
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only if y(-;p) is a solution of equation (3.10) and boundary conditions

y(0; p) = zo(p) =: Yo(P)

y(r;p) = y(v(1);p) = ;((11;;]3)) =m(p) }gi((ﬁ;;z)) (10.1)
= ) Py o(€ip)ip) = m oI P )

Before we seek for approximate solutions of the problem (1.9)-(1.8)
we shall impose conditions for the existence of solutions. To do that we
shall use, again, the Fixed Point Theorem 8.2. To proceed we assume

the following;:
Condition 10.1. i) There is some p > 0 such that

Sc(fo‘E % b(s;p)ds > p
Se(fy Vb(sip)ds

for all p large enough.
i) It happens
lim m(p) = +oo.

p—+00
iv) There is some @ > 0 such that
0 < af(t;p) < 23,
for allt € [0,1] and p large enough.
iii) There are 0,by > 0 such that
. 0 < b(t;p) < bo
for allt € (0,1) and p large enough.

Before we seek for approximate solutions of the problem (3.10)-
(10.1), we shall investigate the existence of solutions.
Let w solve the equation w” + cw = 0 and satisfies the conditions

w(0;p) = yo(p)
and
w(T;p) = m*(p)w(v(&;p);p).
Solving this problem we obtain
So(1 —v) — m*S(v(&;p) — v)
w(v;p) = :
S —msEm P
We shall show that the solution w is bounded. Indeed, from (10.2)
we observe that

(10.2)

SC(T) + m*Sc(T)
m*Se(v(&;p)) — Se(T)

lw(v;p)| < |yo(p)]
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and by using the bounds of all arguments involved we obtain

1
m(p) (%%%) To3 Jo alsipds 4 |

w(v;p)| < %o (p)|-
t ( )l m(p) (b(l;p)) ﬁ Sc(f(f +/b(s;p)ds) 5
(&) ) Se(fy +/b(sip)ds)
Hence, because of Condition 10.1, we obtain
m(p)v/boe® + (bof) i
lw(v;p)| < —[v0(P)| < polyo(p)], (10.3)
m(p)vOp — (bof)*
for all large p, where
o
Po = (\/_Se + 1).
Vop
As in previous sections, we set R := y — w. We shall search for

constants d; and ds such that the function
R(vip) i= diCelw) + daSe(0) + | Sulv = 5)H(sip)ds
0

be a solution of the nonhomogeneous equation
R'4+cR=H

satisfying the conditions

R(0;p) =0 and R(r;p) = y(7;p) — w(r;p) = m*R(v(&;p)). (10.4)
Here H is the function defined by

H(t;p) == C(t,y(v;p); p) R(v; p) + C(t, y(v; p); p)w(v; p),
which, due to (10.3), satisfies the inequality
|H (v;p)| < P(p)|R(v;p)| + P(p)polyo(p)]- (10.5)
Then we obtain that
d,1 T 0

and

1 v(&;p)
e S - m S E ) [/9 Se(v(;p)) = 5)H (s;p)ds

- /OT Se(T — s)H(s;p)ds].
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Therefore the solution R(v;p) takes the form

e Se(v)
Rlvip) = S(1) — m*(p)Sc(v(§;p

- [ sir = oHsp] + | " S.(v - 8)H(s;p)ds,

v(&p)
) [/0 S,(v(€;p)) — s)H(s;p)ds

namely
.
R(v;p)=/ G(v, s;p)H(s; p)ds,
0
where the Green’s function G is defined by

(5(0) [ Se(vg—s)—Selr—s)]
Se(T)=m*(p)Se(v(£ip))

+ S.(v — s),
0<s<v<w

& : = Se(v)Sc(T—s) -
(v,57) = | —seEmipsEe TS ~ )

OS’UE<8<’U

_ Se(v)Se(r—8)
SO OEACEL 0<v<v<s

To obtain upper C* bounds of the kernel G we distinguish the fol-
lowing cases:

0<s< (%3 <.

In this case for p large enough it holds
2(Se(7))?
m*(p)Se(v(§;p)) — Se(7)

1
25:( [y +/b(s; p)ds)
b(L;p) % % 1a(s)dssc(f§\/b(s;p)ds) .
m(p) (b{f;zﬁ)) et Se( f2 A/olsip)ds)

|G(v,5p)| < + Se(7)

IA

+SC(./0 /b(s;p)ds).

Thus due to Condition 10.1 there exists some p such that for all p > p
it holds

|G(v,s;p)| < [

+ 1] ky < 2k,

where
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Also, we can easily see that, for large enough p the first partial
derivative of G (with respect to v) satisfies

9 ‘ Se(7)Ce(T)
5609 < e =5
) CL e
N Lip 4 111 4(s)dsSe Jru v/ b(s;ip)ds
m(p)(gEE ;) fO e SC(Jro 1/b(s;p)ds)
C’c(/o V/b(s;p)ds) < ikll + 2k,

m(p)(3;)tp — 1

+ C.(7)

= 2|

0<v<s<w.
In this case for p large enough it holds

| (5.)° )
SCesiP) < rraten) = S * )

(Jo v/b(sip)ds)

b(1;p) % a(s SSC(fD VA sp)ds)
m(P)(b(&_;%) et fo oM Se( i v/blsmrds )

+ .S'C(fl \/b(s;p)ds) £ v 5 Dl

Similarly, we can obtain that for 0 < v; < s < v and p large enough,
it holds

IA

o)
|G(v; ;)| < 2k and ’%G(v,sgp)‘ < 4k,
while, for 0 < v < v < s, it holds

|G(v; s;p)| < k1 and ‘%G(’U, s;p)‘ = Ok

Therefore for all s,v we have

max{|G(v, s;p)|, '%G(v,s;p)‘} < 4k;. (10.6)
Applying the previous arguments we obtain that
1
4k1pobd
[R;p)] < =X Po)|zo(r)] (10.7)

Here A is defined as
1
A :=1—4k P(p)bZ =: A:(p) > 0, (10.8)
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where P(p) is defined in (3.15).
Hence the operator form of the boundary value problem (3.10)-(10.1)
is the following:

y(v; p) = w(v; p)

+/OT G(v,5;0)C(¢(s; ), y(s;0); P)y(s;p)ds, v € Jp. S

To show the existence of a solution of (10.9), as in Section 8, we
consider the Banach space C(Jp, R) of all continuous functions y : J, —
R endowed with the sup-norm || - ||-topology. Fix a p large enough and
define the operator A : C(J,,R) — C(Jp, R) by

@wmm=wmm+ﬁlmwmwwmewmp@@

which is completely continuous (due to Properties 3.1 and 3.3).
To proceed we assume for a moment that it holds

Take a large enough p and set 7 = v(1;p) =: v. Then we have v < bo
and so it holds

Consider the open ball B(0,1;) in the space C(J,R), where

As in Section 8, assume that the operator A does not have any fixed
point in B(0, ;). Thus, due to Theorem 8.2 and by setting ¢ = 0, there
exists a point z in the boundary of B(0,!;) satisfying

g NAE
for some A € (0,1). This means that for each v € J, it holds

V@HSHwW+AnG@ﬁmW0w&mL4ﬂmmdﬂW&

Then we have
uwNSHwn+4MP@)A|4@ws

and therefore
|2(v)| < [Jwl]| + 4k P(p)7]|2|l,

which leads to the contradiction
[|wl|

h=lell < TP 0L
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Taking into account the relation between the solutions of the original
problem and the solution of the problem (1.9)-(1.8), as well the previous
arguments, we conclude the following result:

Theorem 10.2. If Properties 3.1, 3.3 and (10.8) are true, then the
boundary value problem (1.9)-(1.8) admits at least one solution.

Now, we give the main results of this section. If w is the function
defined in (10.2) we define the function

E(t;p) : = Y(t;p)w(v(t; p); p)
¥ Se(1 —v) = m*S(v(&;p) — v)

=Y e sy PP (o
_ (b(0;p)\ Lty X(EGp)
- (b(t;p)) exp (- 5/0 o(ei2)%) 3o, py 0@

where

X(t;p): = Sc(/tl V/b(s;p)ds)

i) (D) ki [,

which, as we shall show, it is an approximate solution of the problem
under discussion.

Theorem 10.3. Consider the boundary value problem (1.9)-(1.8), where
assume that Properties 8.1, 3.3, 8.1, the conditions (10.8) and (1), (%)
of Theorem 4.2 keep in force. Also, assume that o € Ag.

a) If the condition

I;l_ﬁl? QE(CI)J) + gE(CEq) = L>0 (10.11)

15 satisfied, then the existence of a solution x of the problem is quaran-
teed and if

E(t;p) = z(t;p) — Z(t;p)
is the error function, where T is defined by (8.14), then we have

E(t;p) =0, p— 400, t€ Co([0,1]). (10.12)
Also, the growth index at infinity of the error function satisfies
Ge(€(t;)) = L, t € Co([0,1]). (10.13)
b) Moreover we have
d

Eﬁ(t;p) ~ 0, p— +oo0, t € Co([0,1]), (10.14)
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and
d

gE(E

Proof. a) Take a N € (0, L) and choose ¢ > 0 as well as —o < Gr(zo),
(thus we have

Et;-)) = L, te Co([0,1]). (10.15)

lzo(p)| < K3(E(p))”,
for some K3 > 0) such that
5

Imn M&;)>(=N+o. (10.16)
Therefore it follows that
c—(<—-N (10.17)
and
P(p) < K(E(p))™, (10.18)

for some K > 0. Thus (10.8) keeps in force for p large enough. This
makes Theorem 10.2 applicable and the existence of a solution is guar-

anteed.
Let £(t;p) be the error function defined in (8.17). From (10.7) it is
easy to obtain that

E(t;p)| < A1 (E(p))7¢.

for all large p, for some A; > 0. Obviously, this relation implies (10.12)
as well as (10.13).

b) Next consider the first order derivative of the error function £(t; p).
Again, as above, we obtain

RO(62)i9)] = |- / G(v, 52 H(s:p)ds vt p)

alt;p)
9

+ [ (6059l + ot G, i) (el ds]

Now, we use (10.16), (10.18), (10.17), (10.6), (10.5) and (10.7) to con-
clude that for some positive constants ks, k4 it holds

Z6EP) < ks P(p)lzo(p)] < ka(B(p))° ¢ < ka(E(p))7",

from which the result follows. O

dt
<Y (60 [3VEEROP) + 222
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11. AN APPLICATION

Consider the equation

g ) g e (11.1)
p
associated with the following boundary value conditions:
1
z(0;p) =p ™", x(1;p) = €’z(5;p). (11.2)

We can easily see that with respect to the unbounded function E(p) :=
p we have

QE(@J) == 1, j = 1,2,3,4,5 and gE(Io) =2
Therefore L = 2 and, so, Theorem 10.3 applies. This means that there
is a solution of the problem (11.1)-(11.2) and an approximate solution
of it is the following (according to (10.10)):
» sin(1 — t) — ePed sin(L — )
:E(t;p) = - T— f
sin(1) — ePed sin(3)

The graph of this function for the values of p = 3.83,6.33,8.83, 15.50
is shown in Figure 5

e_%'p_z, t €[0,1].

12. DISCUSSION

We have presented a method of computing the approximate solu-
tions of two initial value problems and two boundary value problems
concerning the second order ordinary differential equation (1.5). First
of all in section 2 we have given the meaning of measuring the approx-
imation, by introducing the growth index of a function. It is proved
that this meaning helps a lot to get information on how close to the
actual solution is the approximate solution as the parameter p tends
to +co. Section 3 of the work provided the first step of the method,
since therein we have shown the way of transforming by (3.1) the origi-
nal equation to an auxiliary and easy to elaborate differential equation
(3.10).

The sign of the response coefficient b(¢; p) plays an essential role. If
it is positive, we have an wave featured solution, while in case it is
negative we have exponential picture. This is the reason for discussing
the two cases separately especially in the initial value problems. The
first case is exhibited in Section 4, where in Theorem 4.1 we show first
the existence of a solution of the initial value problem and prepare
the ground for the existence of Cl-approximate solutions provided in
Theorems 4.2 and Theorem 4.3. The two theorems give, mainly, similar
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FIGURE 5. Approximate solutions of (11.1) - (11.2),
when p=3.83, 6.33, 8.83, 15.50, respectively.

results, but in the first theorem we assumed that the coefficient a(t; p)
is positive and in the second it is assumed that it may take negative
values as well.

An application of the results in an example where the two coefli-
cients a(t;p) and b(¢;p) are positive, is given in Section 5, where the
Cl-approximate solution is computed. The case of negative b(t;p) is
discussed in section 6 and the approximate results are applied to a
initial value problem in Section 7.

The boundary value problem (1.9)-(1.10) is discussed in Section 8.
First by the help of the (Fixed Point Theorem of) Nonlinear Alternative
we have guaranteed in Theorem 8.3 the existence of solutions of the
problem. Then, in Theorem 8.4 we gave estimates of the error function
E(t;p) == z(t; p) — (t; p), where Z(t; p) is the C'-approximate solution.
Here we are able to give simultaneously our results in the cases of
positive and negative b(t; p). A specific case when a(t; p) is nonnegative
and the solution vanishes in an edge of the existence interval is discussed
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separately in Theorem 8.5, while two applications of the results where
given in Section 9.

In Section 10 we investigated the boundary value problem (1.9)-(1.8).
Again, first in Theorem 10.2 we solved the existence problem by using
the Nonlinear Alternative and then we proceeded to the proof of the
existence of C''-approximate solutions in Theorem 10.3. An application
to specific equation is given in the last section 11.

Notice that all examples which we have presented are associated with
some pictures?, which show the change of the approximate solutions,
as the parameter p takes large values and tends to +oo.

As we have seen, in order to apply the method to a problem we have
to do two things: First to transform the original equation to a new one
and then to transform the initial values or the boundary values to the
new ones. Both of them are important in the process of the method.

And as the transformation of the original equation was already given
in (3.10), what one has to do is to proceed to the transformation of
the boundary values. For instance, in case the boundary values of the
original problem are of the form

z(0;p) = 2'(0;p), z(1;p) =2'(L;p),
then, it is not hard to show that, under the transformation S, the new
function y(-;p) is required to satisfy the boundary values

o 1 1y (0;p) 1 .
¥ (0;p) = T507) [ 150;p) +- Ea(U,p)]y(O,p)
and 1 1¥(Lip) 1
N P . )
Y (r:p) = b(—l,p) [1 3 Bl i Ea(l,p)]y(l,p).

Now one can proceed to the investigation of the existence of approxi-
mate solutions as well as to their computation.
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Oscillation criteria for nonlinear neutral
hyperbolic equations with functional
arguments
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Abstract

This paper is devoted to the study of oscillatory behavior of solutions
to nonlinear neutral hyperbolic equations with functional arguments by us-
ing the integral averaging method and generalized Riccati techniques. First,
we establish oscillation results for nonlinear neutral hyperbolic equations by
reducing the multi-dimensional oscillation problems to one-dimensional oscil-
lation problems for functional differential inequalities. Secondly, we present
oscillation results for nonlinear neutral hyperbolic equations by utilizing Ric-
cati techniques.

Keywords : Oscillation, hyperbolic equations, neutral type, Riccati inequality
2000MSC - 34K11, 35B05, 35R10

1. Introduction

Consider the hyperbolic equation with functional arguments

(E) %(r(t)%( xt)—i—Zh w(z, p(t )))

t)Au(z,t) — Zb (t)Au(z, 74(2))

+Zqi($,t)goi(u($,ai(t))) =0, (z,t) € Q2= G x (0,00),
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where A is the Laplacian in R™ and G is a bounded domain of R™ with
piecewise smooth boundary dG, and the following Dirichlet and Robin (cf.
[10]) boundary conditions:

(B1) u=0 on  9G x [0,00),
(B2) % +pu=0 on 9G x [0, 00),

where v denotes the unit exterior normal vector to G and p € C(0G x
[0,00); [0, 00)).
Throughout this paper we assume that:

A)]r(t) € CH([0,00); (0, 00)),

hi(t) € C?([0,00);[0,00)) (6 =1,2,...,1),

alt), bi(t) € C([0,00);0,00)) (i = 1,2, ..., k),

%(:C:t) € C(Qa [U,OO)) (?‘ = 1721' £ 3 :m); pz(i) L5 02([01 OO)aR): thm pz(t) =
s (i=1,2...,0),

7:(t) € C([0, co); R), tlim lt) = e (L=1,38, ... ;&)

oi(t) € C([0, 00); R), tlim oi(t) =c0 (i=1,2,...,m); p,(s) € CL{R; R) (i =
1,2,...,m) are convex in (0,00) and ;(—s) = —¢,(s) for s > 0.

Definition 1. By a solution of Eq. (E) we mean a function u € C?(Gx
[t_1,00)) N C(G x [t_1,00)) which satisfies (E), where

t_1 = min {0, min, {gg pi(t)} ) i {gg n-(t)}} :
t_; = min {O, min {inf ai(t)}} )
1<i<m | t>0

Definition 2. A solution u of Eq. (E) is said to be oscillatory in §2 if u has
a zero in G x (¢, 00) for any ¢ > 0.

Definition 3. We say that the functions (H;, H,) belong to a function class
H, denoted by (Hy, Ha) € H, if (Hy, Hz) € C(D;[0,00)) satisfy

Ht0) =10 Hilf,8)>0 (=12 dfott>§

where D = {(t,5) : 0 < s <t < 0o}, and the partial derivatives 9H, /0t and
0H,/8s exist on D such that

o,

T (s,t) = hi(s,t)Hi(s,t) and %(t,s) = —ha(t, s)Ha(t, s),

Js
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for some functions hy, hs € Cie(D;R), where Cioe(D;R) denotes the set of
all locally continuous functions on D.

In recent years there has been much research activity concerning the os-
cillation theory of nonlinear hyperbolic equations with functional arguments
by employing Riccati techniques. Riccati techniques were used to obtain var-
ious oscillation results (cf. Mafik [9], Yoshida [15]). For example, we note
that Kamenev-type oscillation criteria for hyperbolic equations have been
obtained in [3,6,12,14]. On the other hand, interval oscillation criteria for
second order differential equation have been investigated by many authors
(1,3,5,6,8,12,13]. In particular, Wang, Meng and Liu [12,13] applied interval
oscillation criteria to linear hyperbolic equations with functional arguments.
Recently, Cui and Xu [1] presented oscillation criteria for hyperbolic equa-
tions which are not of neutral type. It seems that there are no known os-
cillation results for hyperbolic equations of neutral type, which are obtained
by Riccati techniques.

The objective of this paper is to establish oscillation ceireria for the non-
linear neutral hyperbolic equation with functional arguments (E) by employ-
ing the Riccati method.

In Section 2 we reduce our problems to one-dimensional problems for
functional differential inequalities, and second order functional differential
inequalities are investigated in Section 3 via Riccati inequalities. We present
oscillation results for (E) in Section 4 by combining the results of Sections 2
and 3. Two examples which illustrate our main theorems are given in Section
5.

2. Reduction to one-dimensional problems

In this section we reduce the multi-dimensional oscillation problems for
(E) to one-dimensional oscillation problems. It is known that the first eigen-
value A; of the eigenvalue problem

—Aw = w in G,
w=0 on 0G

is positive, and the corresponding eigenfunction ®(x) can be chosen so that
®(z) > 0in G. Now we let

¢;(t) = min g;(z, t).
z€G
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With each solution u(z,t) of the problem (E), (B1) or (E), (B2) we associate
functions U(t) and U(t) respectively, defined by

Jit) = Kq,/u(a:,t)(b(w)d:c,
G

~ 1

5 = i /G i, B,

where Ko = ([; ®(z)dz)™" and |G| = [, dz.
Theorem 1. If the functional differential inequality

i m
% (T(L‘)% (y(t) +Zhi(t)y(p¢(t)))) + 2 aBel@) <0 (1)

has no eventually positive solutions, then every solution u(z,t) of the problem
(E), (B1) is oscillatory in Q.

Proof. Suppose to the contrary that there exists a nonoscillatory solution
u of the problem (E), (B1). Without loss of generality we may assume
that u(z,t) > 0 in G x [t,00) for some t; > 0. (The case where u(z,t) <
0 can be treated similarly). Since (A2) holds, we see that u(z,p,(¢)) >
0@ =12,...,0),uzmt) >0 (E=12..,k) and u(z,0:(t)) > 0 (i =
1,2,...,m) in G x [t;,00) for some t; > ;. Multiplying (E) by Ko®(z) and
integrating over GG, we obtain

l

dit (T(t)% (U(t) + Zhi(t)U(pi(t))))

i=1
m

—a(t) Ke /G Aulz,12(z)ds — Y b()Ko /G Aot ) Bl
+ Z Ks /(;qi(m, t)o(u(z, 0:(t))®(z)dz = 0, t > t;. (2)
From Green’s formula it follows that
Ko / Au(z, )®(z)dz = —\U() <0, t > t, (3)
G
Ks f Aulz, 7i(8)8(@)de = —MU(rs() <0, t> 4. (4)
G
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Using the Jensen’s inequality we observe that

ZK@ / 0@, ), (u(z, 0.,(1))) B()dz > Zqz Do), t= t, (5)

and combining (2)-(5), it follows that

%(T(t ( tHEh p@(t))))Jqul 0:(U(0:(£)) <0, t > #,.

Therefore U(t) is an eventually positive solution of (1). This is a contradiction
and the proof is complete.

Theorem 2. If the functional differential inequality (1) has no eventually
positive solutions, then every solution u(z,t) of the problem (E), (B2) is
oscillatory in 2.

Proof. Suppose to the contrary that there exists a nonoscillatory solution
u of the problem (E), (B2). Without loss of generality we may assume
that u(z,t) > 0 in G X [tg,00) for some t; > 0. Since (A2) holds, we see
that ‘wlz. o)) > 0 (= 1,2, .. 0}, uwlzeri(t)) > 0 (= 1,2,...,k) and
u(z,oi(t)) >0 (i=1,2,. ) in G x [t;,00) for some ¢; > tp. Dividing (E)
by |G| and integratmg over G we obtain

!
Ci (’r(t)% (ﬁ(t) + ; hi(t)g(pi(t))))

k

_a(t) e bi() i e E i
e /Au(m £)do Z ° fA (=l

LGlév_:/.qisctcpzu(:z:U,,(t)))w—O by, (6)
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It follows from Green’s formula that

du
Al tide = —(z,t)dS
| e, [ e
= / pul(z, t)u(z, t)dS <0, t > 1, (7)
aG
/ Aailz, my(t)dz = 6—u($,'ri(t))d5
G ag Ov

— —f ple, () ulz, m(E))dS <0, t >4,  (8)
oG

Using the Jensen’s inequality, we observe that

Z Ko /(;qi(iﬂ,t)%(u(xagi(t)))dﬁ > > a@eU(0:®), t>t,  (9)

=1

and combining (6)—(9), it follows that

l m
- (r(t)d% (ﬁ(t) +y m(ﬂm(m)) + L ate0o) <0, L2 0

=1

Therefore U(t) is an eventually positive solution of (1). This is a contradiction
and the proof is complete.

3. Second order functional differential inequalities

In this section we establish sufficient conditions for every solution y(t)
of the functional differential inequality (1) to have no eventually positive
solution. We assume the following hypotheses:

(A1JA2{A3) For some j € {1,2,...,m}, there exists a positive constants ¢

such that
oi(t) >0 and o;(t) <t,

and @;(s) € C'((0,00);(0,00)), ¥j(s) > 0 and )(s) is nondecreasing for

s> 0;
1
f ——dt = oo;
to 'f‘(t)
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!
D ) <1
i=1

3E) = P12 v B
Theorem 3. Assume that the hypotheses (A4)-(A7) hold, and moreover
assume that

©;(5152) > ©;1(51)ps9(52) for s1 > 0, 82 > 0, where p;1(s) € C([0,00);
[0,00)), @jo(s) € CH((0,00); (0,00)) and ;5(s) is nondecreasing for s > 0.
If the Riccati inegualily

1. I
ZPR—(‘&)

Z'(t) + 22(£) < —Q(t) (10)

for some K > 0 and all large T, has no solution on [T',00), where

Pr(t) = ﬂ%{%ﬁ (11)

Q) = g(t)en (1 - th(ffj(t))) , (12)

then (1) has no eventually positive solutions.
Proof. Suppose that y(t) is a positive solution of (1) on [tg, c0) for some
to > 0. From (1), there exists a j € {1,2,...,m} such that

° (T(t)% (y(t) + Zw)y(pz(m)) + 400,050 <0, 12 1o

i=1
If we define the function

l

2(t) = y(t) + D ha(t)y(ps(1)), (13)

then we see that
(r)2'(£)) < —¢;(V)p;(y(0;(2))) £ 0, t = to. (14)

Since (r(t)z'(t))" < 0, z(t) > 0 eventually, we observe, using the hypothesis
(A5), that 2/(¢) > 0 (t > t;) for some t; > ty (cf. [13, Lemma 2.2]). Hence
r(t)2'(t) is nonincreasing. Then, we find that z'(t) > 0 or 2'(¢j < 0 for
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t > t; > tp. First we assume that 2/(t) < 0 for ¢ > t;. From the well known
argument (cf. [13]) we prove that 2/(¢) > 0 for ¢ > t;. Taking into account
(A6) and (AT), from (13) we see that (cf. Yoshida [15])

y(t) > (1 = Z hi(t ) 2(t), t> 1. (15)

In view of (14) and (15), we observe that

l

(r(©)7'(®) + ;)5 (1 = Zhi(dj(t))) Pi(2(05(1)) <0, T = 1.

Setting B
r(t)2' (¢
M) = o el )
we show that
o OZQY o dh(alo(0)2 05050
R EC) IR g

(sz( (o;(¢)
(

Since z(t) > 0, 2'(t) > 0 eventually, it follows that 2(c;(t)) > ko for some
ko > 0. Hence we observe that

Pia(2(0;5(1)) = @la(ko) = K. (17)
Substituting (17) into (16), we get

wl(t) < *Qj(t)‘le (1 = Z hi(aj(t)))

—KJT(i)z’(t);?m—g%))T), t >t

On the other hand, (14) implies that
r(o;(8))7'(0;(2)) = r(2)2'(2),

and hence

oy l
W)+ (i"))) W) < ~4;()en (1 . men) 09

r(o;(t
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for t > t;. That is, w(t) is a solution of (10) on [t1, c0). This is a contradiction
and the proof is complete.

Theorem 4. Assume that the hypotheses (A4)-(A8) hold. If for each T >0
and some K > 0, there exist (Hy, Hy) € H, ¥(t) € C*((0,00); (0,00)) and
a,b,ce R such that T <a<c<band

: ) /C Hi(s,a) {Q(S) - %T((}gf)))\f(s,a)} (s)ds

Hy(c,a) Ja
+H2(1bc)f Hz(b,s){@() ir(c;irs))ﬂb )}?J)(S)ds>0, i
where
_ ¥
)\1(5=t) = '{b(S)+hl( )
O
Ao(t,8) = o) halt, 5).

Then (1) has no eventually positive solutions.

Proof. Suppose that y(t) is a positive solution of (1) on [ty, 00) for some
to > 0. At first, we assume that y(¢) > 0 on (a,b). Proceeding as in the
proof of Theorem 3, we see that there exists a function w(s) which satisfies

_ Ko
r(a;(s))
Multiplying (20) by H»(t, s) and integrating over [c, ] for ¢ € [¢, b), we have

[ H(t,$)Q(s)b(s)ds

Z = f Hi, Sy (e (el / Hy(t,5) ( g (su(e)ds
( (s))
Ko

w?(s)w(s). (20)

< H(t,cw sz s)Aa(t

-/ Hg(t,s){ %w(s)—%\g(t,s) ”‘}gf”} (s)ds,
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and so

[ e {@(s) _ Lrlos(®) sy s)} IS (U

Hg(t,C) 4 Ko’

Letting t — b~ in the last inequality, we obtain

L 17(05(s)) |
H5,0) / Hz(b,s){Q(s)gl o /\g(b,s)}w(s)dssw(c)w(c). (21)

On the other hand, multiplying (20) by H;(s,t) and integrating over [t, | for
t € (a, ¢, we obtain

chlstQjS
< ]Hlst)w fﬂls) w?(s)(s)ds
< —Hi(e, Hw(e)w(c) + /Hlst/\2 T(g“" )%b(S)dS

]Hlst){ UJ(S)) ) e -;—Al(s,t) ﬂ%} s}l

and therefore

W 17(04(5)) 2
Hl(c,t)ft Ha(s,t) {Q(s)4 o Al(s,t)}w(s)dsg_w(c)q,[,(c).

Letting t — a™ in the last inequality, we obtain

e ), e - ;760 v < ~weue
(22)
Adding (21) and (22), we obtain the following

0 {00 - 1Dt

+H2(b,c)/ 0 5){ (5) iT(Ki))“\Z(b )}dsgo’
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which contradicts the condition (19). Pick up a sequence {7;} C [tp, o0) such
that T; — oo as ¢ — oco. By the assumptions, for each ¢ € N, there exists
a;, b;, ¢; € [0,00) such that T; < a; < ¢; < b;, and (19) holds with a, b, ¢
replaced by a;, b;, ¢;, respectively. Therefore, every nontrivial solution y(t)
of (1) has at least one zero ¢; € (a;,b;). Noting that t; > a; > T3, i € N, we

see that y(t) is an oscillatory solution of (1). This is a contradiction and the
proof is complete.

Theorem 5. Assume that the hypotheses (A4)-(A8) hold. If for each
T > 0 and some K > 0, there exist functions (Hy,Hs) € H, %(t) €
C((0, 00); (0, 00)), such that

liii}pﬁHl(s,T) {Q(s) i (?S))/\z( T)}¢(s)ds>0 (23)

and

h?iigp/ Hy(t, s) { s) — LlLT(C;( ))Ag( )}w(s)ds > 0, (24)

then (1) has no eventually positive solutions.
Proof. For any T > tg, let a = 7" and choose T' = a in (23). Then there
exists ¢ > a such that

f " Hy(s, 0) {Q(s) - ir(?{'fn)@(s, a)} (a0 (25)
Next, choose T' = ¢ in (24). Then there exists b > ¢ such that
f Hy(b s){ “(“3(5))/\2(5 )} (s)ds > 0. (26)

Combining (25) and (26), we obtain (19). By the virtue of Theorem 4, the
proof is complete.

4. Oscillation criteria for Eq. (E)

In this section, by combining the results of Sections 2 and 3, we establish
sufficient conditions for oscillation of Eq. (E).

Using the Riccati inequality, we derive sufficient conditions for every so-
lution of hyperbolic equation (E) to be oscillatory. We are going to use the
following lemma which is due to Usami [11].
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Lemma. If there exists a function ¥ (t) € C*([Tp,0); (0,00)) such that

f: (ﬁ(;)(lgﬁ) . dt < o0,
fn Wfﬁ = 00,

" p()a(t)dt = oo
T1

for some Ty > Ty, then the Riccati inequality

2 (t) 1%@@)? < —q(0),

"B
where § > 1, B(t) € C([Tp, 0); (0,00)) and g(t) € C([Tp,o0);R), has no
solution on [T, 00) for all large T

Combining Theorems 1-3 and Lemma, we obtain the following theorem.
Theorem 6. Assume that the hypotheses (A1)-(A7) hold. If

[ (5.
/Tl Pg(tgw(wdt %,
: $(HQ()dE = oo,

where Pr(t) and Q(t) are defined by (11) and (12) for some K > 0, then
every solution u(xz,t) of (E), (B1) (or (E), (B2)) is oscillatory in .

Combining Theorems 1-2 and 4, we have the following theorem.

Theorem 7. Assume that the hypotheses (A1)-(A7) hold. If for each
T > 0 and some K > 0, there ezist functions (H1,H;) € H, ¥(t) €
C'((0,00);(0,00)) and a,b,c € R such that T < a < ¢ < b and (19) hold,
then every solution u(z,t) of (E), (B1) (or (E), (B2)) is oscillatory in S).

Analogously, combining Theorems 1-2 and 5 we derive the following.

Theorem 8. Assume that the hypotheses (A1)-(A7) hold. If for each
T > 0 and some K > 0, there ewist functions (Hy,Hs) € H, %(t) €
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CY((0,0); (0,00)) such that (23) and (24) hold, then every solution u(z,t)
of (E), (B1) (or (E), (B2)) is oscillatory in Q.

5. Examples

We present the following examples which illustrate the applicability of
our results.
Example 1. Consider the problem

2 (8 (ot + et ) - Lt

1
fie_“‘/_\u (:E, t+ g) — e Au(x,t — 27)

+e?tu(z,t —m) =0, (x,t) € (0,7) x [1,00), 27
i), 2)=ulm i) = 0 (28)

Heren=1,k=2,m=1,7@) = e, m(t) = 1/2, qi(z,t) = €*,01(t) = t—7
and ¢,(§) =1 = K. It is easy to see that

e |
.P[((t) = 56 B ; Q(t) = 56%.

By choosing
W(t) =%, Hy(s,t) = Halt, s) = (et _ 85)2,

we see that

=¥
=

le—t+ﬂ' _26—2t 2 o
2 ( ) ) =f 26—3t+ndt<oo:‘

/ (m) dt = / 2€3i_ﬂdt = 00,
jeT T X em

Choose now a =0, b = 27 and ¢ = 7 and observe that
1 T 1 1 4e?s
e e iy T —? 2) 2.2 0 To—%tmwm TV —23d
e GRS ol cf e Lt

1 " s 1 g 1 g 460 —2s
+(827r o e“)2f7r (e — &) {26 = 26 s (& — o2 e “ds = U
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that is, the condition (19) is satisfied. Also

£ 1 1 4e2
: T\2 2 —st -2
h?li‘.fpfq"(es_s ) {565_16 ) w(es—eT)Q}e e
. Lot er 1 3\ or | —tin  Tm
= limsup Ze —e +5 t—T+§ e +e —e >0
t—oo

and
: ‘ 2 [L o 1 2
lzﬂilpﬁ(et—ss) {56 = ie*”’”m e “*ds
1
3

= li?lso})lp { (% (t -T - %) - e“ST) e +ettT 4 %e“”“ - iew} = 1
that is, the conditions (23) and (24) hold. Thus, all the conditions of Theo-
rems 6-8 are satisfied. Therefore every solution u(z,t) of the problem (27),
(28) is oscillatory in (0, 00) x [1,00). For example, u(z,t) = sin z sin ¢ is such
a solution.

Example 2. Consider the problem

% (ﬁ% (u(a:,t) + %u(m,t - ZW))) ~ Au(z, §)

3 3 T
—mAu(:c,t —2m) — m.&u (:I‘, t+ 5)
Fulz,t — 1) =0, {251) € (Oim) % [1,00), (29)

—uz(0,t) = uy(m,t) = 0. (30)

Heren =1, k =2, m =1, 7(t) = (t + m)7%, h(t) = 1/2, qi(z,t) = 1,
o1(t) =t — 27 and ¢},(§) =1 = K. It is easy to see that

1 1

P~ = — = —,

If we choose 9(t) = t2, then

= [ (200 *2
2t2 —

o
B
=] s
X
\.M__./
&
Il
3



Next, choose ¥(t) = 1, Hi(s,t) = Ha(t,s) = (t — s)?, and a = 0, b = 2m,
¢ = . It is easy to see that

t ™ 571 T 41 :
;03{5‘@8—2}3‘“

1 [ 1 1 4
a2 2 s 2 L - 2 :
t3 ] (27 — s) {2 432(%#5)2}3 ds >0
Moreover,
3 1 11 4
li N 4 oF e e "
uglscgpfrp(s ) {2 452(‘9#,”2}8 ds
= limsup itS—ETt‘l—lezt?’—t—iT‘r’—l-T >0
npme il LT 6 60
and

t 1 11 4
= limsup {its — 1T%? + (ET‘* - 1) £ — iT5 +T} > 0.
t—oo | 60 6 ! 10
Thus, all the conditions of Theorems 6-8 are satisfied. Therefore, every
solution u(z,t) of the problem (29), (30) is oscillatory in (0,7) x [1,00). One
such solution is u(z,t) = cosz sint.
Observe, however, that

/m%(Q(siw)2+(sfﬂ)3)ds<oo,

and therefore the condition (8) of Theorem 2 given by Deng [2] is not satisfied.
Thus, Theorem 2 by Deng [2] can not be applied to this example.
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